
Computer Science

Algorithm Evolution
with Internal Reinforcement

for Signal Understanding
Astro Teller

December 5. 1998
CMU-CS-98-132

Mellon
K

Vi'i ,_.-■?i*'?rl\\'~.::

%s>' DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

BUG QUALITY IfiSFBCTBD 1

Algorithm Evolution
with Internal Reinforcement

for Signal Understanding
Astro Teller

December 5, 1998
CMU-CS-98-132

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Manuela M. Veloso, Chair

Tom Mitchell
Katsushi Ikeuchi (University of Tokyo)

Rodney Brooks (MIT)

Preceding Page*BSank

Copyright © 1998 Astro Teller

The work has been supported through the generosity of the Fannie and John Hertz Foundation. This
research is also sponsored in part by the Department of the Navy, Office of Naval Research under contract
number N00014-95-1-0591. Views and conclusions contained in this document are those of the author and
should not be interpreted as necessarily representing official policies or endorsements, either expressed or
implied, of the Fannie and John Hertz Foundation, Department of the Navy, Office of Naval Research or the
United States Government.

Reproduced From DISTRIBUTION STATEMENT A
Best Available Copy Approved for Public Release

Distribution Unlimited

Keywords: Machine learning, signal understanding, pattern recognition, genetic programming,
evolutionary computation, internal reinforcement, bucket brigade, neural programming, Turing complete

yVjjcAmellon School of Computer Science

DOCTORAL THESIS
in the Held of

COMPUTER SCIENCE

Algorithm Evolution with Internal Reinforcement
for Signal Understanding

ASTRO TELLER

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

THESIS COMMITTEE CHAIR DATE

^>3 M
DEPARTMENT HEAD DATE

APPROVED:

\ <dj I^XJ^___ /ä-£/-?/
DEAN DATE

Acknowledgements

Without the support and guidance of my advisor, Manuela Veloso, this dissertation
would never have happened. Financially, the Fannie and John Hertz Foundation generously
supported me through most of my graduate work for which I am deeply indebted to them.
Emotionally, my wife Zoe has been my lighthouse and she is certainly a necessary if not
sufficient condition for the existence of this document. I have benefited from the advice
and ideas of many more people than I could list on this page. Among that group however,
John Koza, David Andre, and Peter Stone stand out in my mind as people who have, over
a number of years, been instrumental in helping me shape the direction of my research. In
addition, David Andre, Sean Luke, and Bill Langdon went out of their way to help me finish
this thesis.

Contents

Introduction 11
1.1 Motivation 11

1.1.1 Motivation for Using Evolutionary Computation 12
1.1.2 Where Have All the Good Programs Gone? 12
1.1.3 The Questions This Thesis Answers 13

1.2 Objectives and Approach 14
1.3 Thesis Contributions 16
1.4 A Reader's Guide to the Thesis 17

A Brief Overview of Algorithm Evolution 19
2.1 Evolutionary Computation as Machine Learning 19

2.1.1 Details about the EC cycle 21
2.1.2 Implications for this Thesis 27

2.2 Evolution of Algorithms 27
2.2.1 Genetic Programming 28
2.2.2 Genetic Algorithms, Evolutionary Strategies, and Evolutionary Pro-

gramming 29

The PADO Approach 31
3.1 A PADO Overview 31
3.2 The PADO Internals 33
3.3 Orchestration 36
3.4 Algorithm Evolution 38

3.4.1 Using GP to Evolve Turing Complete Programs 38
3.4.2 Algorithm Representation in GP 39
3.4.3 The Halting Problem 39

3.5 Striping PADO Down to the Essentials 40

PADO Orchestration 43
4.1 Orchestration Techniques 44

4.1.1 Fitness Proportionate Orchestration 45
4.1.2 Evolved Orchestration 46
4.1.3 Weight-Search Orchestration 46
4.1.4 Program-Search Orchestration 47
4.1.5 Nearest-Neighbor Orchestration 48

6 CONTENTS

4.1.6 Other Orchestration Techniques 50
4.2 Experimental Comparisons 51

4.2.1 Example Domain 51
4.2.2 Experiments with Orchestration 54
4.2.3 Discussion 56

5 Neural Programming 59
5.1 Introduction 59
5.2 The NP Representation 60
5.3 Illustrative Examples 62

5.3.1 Example 1: The Fibonacci Series 62
5.3.2 Example 2: The Golden Mean 63
5.3.3 Example 3: Foveation 63

5.4 Evolving Subroutines 66

6 Internal Reinforcement in NP 67
6.1 Introduction 67
6.2 Creating a Credit-Blame Map 68

6.2.1 Accumulation of Explicit Credit Scores 68
6.2.2 Function Sensitivity Approximation 69
6.2.3 Refining the Credit-Blame Map 72
6.2.4 Credit Scoring the NP arcs 74

6.3 Using a Credit-Blame Map ■ 75
6.3.1 Mutation: Applying a Credit-Blame Map 75
6.3.2 Crossover: Applying a Credit-Blame Map 77

6.4 Exploration vs. Exploitation Within a Program 78
6.5 The Credit-Blame Map Before/After Refinement 81
6.6 IRNP and Indexed Memory 82
6.7 IRNP in Tree based GP 85

7 Experimental Results 87
7.1 Experimental Overview ' . . .• 87
7.2 Generic Signal Domain 89

7.2.1 Description of the Domain and Problem 89
7.2.2 Setting PADO up to Solve the Problem 90
7.2.3 The Results 90
7.2.4 Result Variance from Parameter Changes 92

7.3 Natural Images . 94
7.3.1 Description of the Domain and Problem 94
7.3.2 Setting PADO up to Solve the Problem 94
7.3.3 The Results 95

7.4 Acoustic Signals 97
7.4.1 Description of the Domain and Problem 97
7.4.2 Setting PADO up to Solve the Problem 98
7.4.3 The Results 99

CONTENTS 7

7.5 Acoustic Signals Revisited 100
7.5.1 Description of the Domain and Problem 101
7.5.2 Setting PADO up to Solve the Problem 101
7.5.3 The Results 101

7.6 Protein Identification 104

7.6.1 Description of the Domain and Problem 104
7.6.2 Setting PADO up to Solve the Problem 106
7.6.3 The Results 107

7.7 Hand-held Images 109

7.7.1 Description of the Domain and Problem 109
7.7.2 Setting PADO up to Solve the Problem 109
7.7.3 The Results 110

7.8 Experiments Summary Ill

8 Related Work 113
8.1 Algorithm Evolution 114
8.2 Signal Understanding 115
8.3 Orchestration 116
8.4 Function Sensitivity Approximation 116
8.5 Work Related to Thesis Contributions 117

9 Conclusions and Future Work 121
9.1 Conclusions 121

9.1.1 Reviewing the Motivation and Goals 121
9.1.2 Reviewing the Approach 122
9.1.3 Reviewing the Contributions 122

9.2 Future Work 123
9.2.1 Making Better Use of Available Tools 123
9.2.2 Taking More Advantage of Sensitivity Information 124
9.2.3 Extending IRNP Bucket Brigade 125
9.2.4 The Next Level of Proactive Program Changes 126
9.2.5 META-Orchestration 126

A Notation Table 129

B Turing Complete Programs 131
B.0.6 The Necessary Theoretical Confession 133

C NP Implementation Details 135
C.l Initializing an NP program 135
C.2 NP and PADO Knobs 136
C.3 Further Implementation Details 139

C.3.1 Memory use with IRNP 139
C.3.2 Implementation of the OUTPUT nodes in NP 140

8 CONTENTS

D Biology Data 141
D.l Hydrophobicy/Aliphaticy 141
D.2 Atomic Weights 141
D.3 Charged Amino Acids 142
D.4 Van der Waals Volume 142

E Example Programs 143

F PADO History 145
F.l Historical Representations 145
F.2 Evolution with Explicit Substructure 146

F.2.1 ADFs in PADO 146
F.2.2 Libraries in PADO 147

F.3 Learned Algorithm Recombination Algorithms 148

G NP vs. CellularEncoding 149
G.l Overview of Cellular Encoding 149
G.2 Thesis Corroboration from Cellular Encoding 150

H Statistical Significance Information 151

Abstract

Automated program evolution has existed in some form for almost forty years. Signal un-
derstanding (e.g., signal classification) has been a scientific concern for longer than that.
Generating a general machine learning signal understanding system has more recently at-
tracted considerable research interest. First, this thesis defines and creates a general machine
learning approach for signal understanding independent of the signal's type and size. This is
accomplished through an evolutionary strategy of signal understanding programs that is an
extension of genetic programming. Second, this thesis introduces a suite of sub-mechanisms
that increase the power of genetic programming and contribute to the understanding of the
learning technique developed.

The central algorithmic innovation of this thesis is the process by which a novel principled
credit-blame assignment is introduced and incorporated into the evolution of algorithms,
thus improving the evolutionary process. This principled credit-blame assignment is done
through a new program representation called neural programming and applied through a
set of principled processes collectively called internal reinforcement in neural programming.
This thesis concentrates on these algorithmic innovations in real world signal domains where
the signals are typically large and/or poorly understood.

This evolutionary learning of algorithms takes place in PADO, a system developed in this
thesis for "parallel algorithm discovery and orchestration" and as a demonstrably effective
strategy for divide-and-conquer in signal classification domains. This thesis includes an
extensive empirical evaluation of the techniques developed in a rich variety of real-world
signals. The results obtained demonstrate, among other things, the effectiveness of principled
credit-blame assignment in algorithm evolution.

This work is unique in three aspects. No other currently existing system can learn to
classify or otherwise "symbolize" signals with no space or size penalties for the signal's size
or type. No other system based on genetic programming currently exists that purposefully
generates and orchestrates a variety of experts along problem specific lines. And, most
centrally, the thesis introduces the first analytically sound mechanism for explaining and
reinforcing specific parts of an evolving program.

The goal of this thesis is to argue, explain, and demonstrate how representation and search
are intimately connected in evolutionary computation and to address these dual concerns in
the context of the evolution of Turing complete programs. Ideally, this thesis will inspire
future research in this same area and along similar lines.

Chapter 1

Introduction

1.1 Motivation

The demand for robust AI systems with few constraints coupled with the rising cost of
programmer time relative to computer cycles, has pushed the fields of signal understanding
and machine learning together. Because human researchers cannot meet (i.e., program by
hand) the perception demands of the continuing explosion of specialized and general appli-
cations, the signal-to-symbol problem has become central to artificial intelligence in general,
and to machine learning in particular. As an example, [ikeuchi and Veloso, 1997] highlights
this problem and describes a variety of innovative research programs in the specific area of
computer vision.

The signal-to-symbol problem is the general task of labelling a perceived signal with
one or more symbols (e.g., identifying the primary object present in a video image). In
other words, a solution to this problem takes a large number of inputs (the raw signal) and
transforms it into a smaller number of outputs (the symbols). These symbols are intended
to capture some useful aspects of the input. The symbols will, in turn, permit higher level
reasoning based on the perceived signals.

Because machine learning strives for increasing autonomy, much of the work done in
machine learning today has, as an eventual goal, a general system for producing such a
signal-to-symbol mapper that works well for a wide variety of domains. Machine learning
techniques exist today that attempt to accomplish this goal (see [Mitchell, 1997] for a com-
prehensive survey). Artificial Neural Networks (ANNs) [Rumelhart et al, 1986] and Decision
Trees [Quinlan, 1986] are just two examples. These techniques have advantages that include
theories about convergence and expressiveness under certain assumptions. Because of these
particular positive attributes, extending these systems to very general domains becomes
complicated. For example, it would be hard to argue that introducing memory access and
time into ANNs is a simple matter (e.g., [Hild and Waibel, 1993]). Getting decision trees to
handle highly non-linear functions, especially of continuous values, requires considerable un-
natural contortion of the original technique (e.g., [Squires and Sammut, 1995]). The original
motivation for this thesis was the feeling that, given the slow progress of existing techniques
in the general signal-to-symbol domain, perhaps a significantly different direction would be
worth exploring.

11

12 CHAPTER 1. INTRODUCTION

1.1.1 Motivation for Using Evolutionary Computation

Evolutionary computation (EC) is any algorithm that uses the concepts of selection pres-
sure, fitness proportionate reproduction, or sexual reproduction. EC has been an area of
active research since the 1960s (e.g., [Fogel et ai, 1966]). The last few years have seen
a tremendous surge in interest in a variety of evolutionary computation schemes includ-
ing genetic algorithms (GA), genetic programming (GP), evolutionary strategies (ES), and
evolutionary programming (EP). In the movement out of good old-fashioned artificial in-
telligence and towards nouvelle AI, evolution has taken on an increasingly central role as
a source of inspiration (e.g., [Brooks, 1986, Brooks, 1990, Brooks, 1997]). In addition, the
model of evolution as an appropriate model for mental learning has gained favor in philoso-
phy and cognitive science recently (e.g., [Dennett, 1992]). Because of these trends, because
of the broad range of successes GP has had in recent years (e.g., [Andre et a/., 1996,
Koza et al, 1996, Nordin, 1997a]), and because of the expressiveness and flexibility of evolv-
ing algorithms, the general paradigm of evolutionary computation was selected as the basis
of research for this thesis that investigates its potential as a machine learning technique in
the signal understanding arena.

1.1.2 Where Have All the Good Programs Gone?

The previous section motivated the use of evolutionary computation as the underlying mecha-
nism for working on the signal-to-symbol problem. There is, however, a fundamental problem
with evolutionary computation, and particularly with genetic programming, as it is currently
practiced. The problem is that in the space of functions, even if it has been carefully defined
so that most or all examined functions are legal, the density of functions that do something
"interesting" is very low.1 This is increasingly the case as the expressiveness of the language
in which the programs are written moves up the ladder from regular languages to Turing ma-
chines. Because PADO, the learning approach presented in this thesis, has been committed
to the evolution of these more complicated algorithms, it must address this problem.

This low density of programs "worth searching," combined with the random recombina-
tion that characterizes genetic programming, seems to have marginalized GP, an exciting
and valuable subfield of machine learning. The following quotes from the newest, most com-
plete introduction to Genetic Programming [Banzhaf et al, 1998], (written, obviously, by
pro-GP researchers) highlight this inconsistency that still exists in the paradigm. Basically,
the authors of this book acknowledge both that GP needs search operators that tend to
focus on good solutions and that GP search operators are currently not focused, but instead
are guided by random transformations.

"It should be obvious that a good machine learning system would use search
operators which take a path through solution spaces that tend to encounter good
solutions and to bypass bad ones."

1For example, in the space of Turing machines, the density of programs that act for multiple steps and
then halt is conjectured to be set of measure zero ([Hopcroft and Ullman, 1979]).

1.1. MOTIVATION 13

"In GP, the primary transformation operators are 'crossover' and 'mutation.'
Mutation works by changing one program; crossover by changing two (or more)
programs by combining them in some manner. Both are, to a large extent, con-
trolled by pseudo-random number generators."

- From Genetic Programming: An Introduction, 1998.

This thesis develops a novel solution to this disparity between what GP is and what GP
wants to become. As part of the evolutionary process, the thesis introduces a method of
program transformations that is principled, based on the program's behavior, and signif-
icantly more likely to identify new programs that are worth searching than random local
sampling. The single most notable contribution of this thesis is the identification of this
problem in genetic programming and a detailed approach, both comprehensive and analyt-
ical, on how to address it. The main algorithmic innovation of this thesis is the process by
which principled credit-blame assignment can be brought to evolution of algorithm and that
credit-blame assignment can be used to improve that same evolutionary process. This prin-
cipled credit-blame assignment is done through a new program representation called neural
programming and applied through a set of principled processes collectively known as internal
reinforcement in neural programming. This internal reinforcement of evolving programs is
presented in this thesis as a first step toward the desired gradient descent in program space.

Genetic programming is a successful representative of the machine learning practice of
empirical credit assignment [Angeline, 1993]. Empirical credit-blame assignment allows the
dynamics of the system to implicitly (indirectly) determine credit and blame. Evolution
does just this [Altenberg, 1994]. This approach could be typified as reinforcement of the
type "This program is better than 82.2% of the other programs in the evolving population."

Machine learning also has successful representatives (e.g., ANNs) of the practice of explicit
credit assignment. In explicit credit assignment machine learning techniques, the models to
be learned are constructed so that why a particular model is imperfect, what part of that
model needs to be changed, and how to change the model can all be described analyti-
cally with at least locally optimal (i.e., greedy) results. An example of this type of credit
assignment and reinforcement is "weight i in level j of this ANN should be 5% larger."

To be clear, this work on internal reinforcement is not just an attempt to enable gradient
descent in program space. Internal Reinforcement is designed to bridge this credit-blame
assignment gap by finding ways in which explicit and empirical credit assignment can find
mutual benefit in a single machine learning technique.

1.1.3 The Questions This Thesis Answers

In summary, the two main questions that this thesis has used as guiding lights are:

• Can the evolution of algorithms be extended in a domain-independent way
to incorporate accurate credit-blame assignment of each program's internal
structure and behavior in such a way that focused, principled reinforcement
information improves the evolutionary process?

14 CHAPTER 1. INTRODUCTION

• Can the evolutionary computation paradigm be extended, and how far, to
apply successfully as a machine learning technique to the general signal-to-
symbol problem?

1.2 Objectives and Approach

The objectives of this thesis arise from a combination of three factors: the desire to see a
more general solution to the machine learning problem of finding mappings between signal
and symbol sets; the conviction that new approaches (in particular, ones using evolutionary
computation) are worth investigating; and the clear and problematic lack of explicit credit-
blame assignment or credit-blame use in genetic programming.

Existing machine learning techniques have some advantages and disadvantages with re-
spect to finding solutions to the general signal-to-symbol problem. Concretely, this thesis
work has attempted to overcome some of these disadvantages without losing any of the

important advantages of existing systems.
Disadvantages of existing machine learning techniques for signal understanding include a

number of factors. First, the input must almost always be preprocessed. This thesis creates
a machine learning technique in which signal preprocessing is unnecessary. Second, domain
knowledge must be input in the form of preprocessing or of technical details of the machine
learning strategy that are not obvious to a signal expert. This thesis creates a machine
learning technique in which domain knowledge can be given to the learning system in a way
that does not require intimate knowledge of the learning technique.

Advantages of existing machine learning techniques for signal understanding include a
number of factors. First, "real-world" signals can be handled. This is a crucial aspect which
the learning paradigm of this thesis also provides. Second, even when learning must be
done off line, the learned function can be run in real time. Moving to the realm of learned
(evolved) algorithms does add additional time to its training procedure, but this thesis
maintains representations that generate algorithms that can be run in real time. Third,
why the popular machine learning techniques work is well understood, thereby generating
faith in those methods. This thesis, in providing a credit-blame assignment approach to the
learning of models along with a more principled search mechanism using that credit-blame
assignment, creates the groundwork for the same understanding demonstrating the effective
use of genetic programming as a machine learning approach.

This thesis demonstrates that a learning system based on evolutionary computation can
be built that takes signals as input and produces symbols as output. More specifically, this
thesis demonstrates that such a system will involve the coordination of evolved programs
whose basic knowledge of the signals comes, not from preprocessing, but from parameteriza-
tion of domain knowledge in the form of signal primitives. More importantly, this learning
takes places with no prior knowledge of the signal type or size and with no constraints on
the symbol type to be returned by the learned algorithms. The learning, through evolution
in this thesis, is driven by a principled update/search procedure in the context of a pro-
gram representation that facilitates the addition of principled search heuristics into genetic
programming.

1.2. OBJECTIVES AND APPROACH 15

A distinction is being made in these objectives between the primary work of the thesis,
efficient evolution of complex algorithms, and the area of application on which this thesis
work is focused, signal understanding.

There are a number of related fields that all, to some extent, can be thought of as address-
ing the signal understanding problem: Computer Vision, Machine Learning, Digital Signal
Processing, Pattern Recognition, etc. Most generally, the problem of signal understanding
is the signal-to-symbol mapping problem. That is:

Given a "signal" type and a notion of "symbols" that represent
important characteristics of signals of that type, how can we create
a process for automatically extracting these symbols from the signals
they represent?

For example, given a video image (e.g., 1000x1000 pixels where each pixel is a 32-bit
color value), how can we extract pieces of information about the signal such as "That is a
picture of a cow!" as shown in Figure 1.1. This sort of question is the motivation for the
area of application of this thesis.

■ _> "Cow"
Figure 1.1: The signal-to-symbol problem. This example is a video image to text translation.

This thesis consists of two main components. The first involves developing a machine
learning mechanism with the following properties. This approach, PADO, is a supervised
machine learning technique for signal understanding that employs evolutionary computation.
The inputs to the system are a set of labeled example signals and a set of functions for
examining those signals. The output of the system is a learned signal classifier.

The second objective and component of this thesis is the theoretical and practical ex-
ploration of internal reinforcement, the principled update procedure for the evolution of
programs, and neural programming, the program language representation that enables inter-
nal reinforcement.

16 CHAPTER 1. INTRODUCTION

1.3 Thesis Contributions

This thesis contributes a machine learning mechanism that satisfies the objectives above.
The several specific elements of this machine learning mechanism are technical and scientific
contributions to the fields of algorithm evolution and signal understanding. The following is
a list of those fields and subfields and the specific contributions to them.

• Contributions to the field of Algorithm Evolution

— Contributions to EC in Representations
Neural Programming, a general graph data-flow language for program
evolution
Representations and recombination operators are intimately linked and this represen-
tation has been created to facilitate internal reinforcement.

— Contributions to EC in Input
Parameterized Signal Primitives

The evolving programs need some access to the signals. This access is given to PADO by
the user in the form of parameterized subroutines. This means that domain knowledge
can be given to the evolving programs in a simple programmatic form.

— Contributions to EC in Recombination
Internal Reinforcement using a Credit-Blame map
Other machine learning techniques (e.g., ANNs) have the advantage that they can
reinforce specific parts of the function being created because the technique allows for
introspection and assignment of credit and blame to parts of the function. This is
good not only because it improves learning, but also because it helps researchers to
understand why and how the technique works. An internal reinforcement policy for
algorithm evolution is shown to be possible in this thesis. This internal reinforcement
policy is used to improve learning for the evolving programs.

— Contributions to EC in Results Determination
Evolution and Orchestration of multiple evolved specialist experts

On the highest conceptual level, the PADO mechanism learns algorithms for signal
discrimination using an evolutionary computation framework. These algorithms are
trained by PADO to learn along "specialist" lines. Then PADO orchestrates the best
of these learned programs into a complete signal understanding system.

• Contributions to the field of Learned Signal Understanding

— Arbitrary signal size and type
The mechanism (PADO) creates a system that takes signals as input and returns one or
more symbols as output, independent of the signal type and size. By "independent of
the signal type and size" we mean exactly that the number of degrees of freedom in the
model (program) being learned need not change when the signal type or size are altered.
The mechanism is applicable to large, unprocessed signals. This aspect of "realism"
is important for this thesis since robust learned signal understanding systems need to
handle real world signals without explicit preprocessing.

1.4. A READER'S GUIDE TO THE THESIS 17

— Expert knowledge input at the symbolic (programmatic) level

Parameterized Signal Primitives.

The final achievements of this research are two fold. First, this thesis communicates
the exciting result that through the exploration of new program representations we have
captured the explanation and principled update power of explicit credit-blame assignment
with the flexibility and generality of genetic programming. Second, this thesis produces
a paradigm that provides real generality in the signal-to-symbol problem while remaining
tractable.

1.4 A Reader's Guide to the Thesis

Chapter 2 provides an introduction to evolutionary computation for those who are unfamiliar
with the basic terminology and methods. It can safely be skipped by those who already have a
background in the fields of genetic programming, evolutionary strategies, genetic algorithms,
and evolutionary programming.

Chapter 3 describes PADO, the general signal-to-symbol mapper that is itself one of
the contributions of this thesis and is the context within which the other contributions are
described. The learned programs inside PADO are each expected to learn to discriminate
one signal type from all others in a set of labeled signal training examples. Detail is given
to the version of PADO used as the specific context for experiments throughout this thesis.

Chapter 4 focuses on the orchestration phase of PADO.
Chapter 5 introduces and describes in detail the current program representation of PADO,

neural programming. This representation is the basis for the evolution of programs that
facilitates the creation of a Credit-Blame map and makes internal reinforcement possible.

Chapter 6 presents internal reinforcement, the thesis mechanism that provides some of
the benefits and characteristics of gradient descent in program space.

Chapter 7 demonstrates a number of the claims of this thesis through an extensive em-
pirical evaluation using a series of illustrative, real-world signal classification tasks as well as
a simple, focused, manufactured' generic signal domain.

Chapter 8 contains a survey of the closely related, synergistic work to the work of this
thesis. In addition, it reports on a number of alternative methods that have been or are
currently being examined for solving some of the general problems addressed in this thesis.

Chapter 9 concludes the thesis and discusses a number of exciting specific directions of
future work in this area. There are a number of appendices that have additional informa-
tion on implementation details, example.programs, statistical significance of results, Turing
completeness discussion, and background detail on some of the parameterized signal primi-
tives used in the thesis experiments. Of particular important is Appendix A that contains a
complete, annotated list of the mathematical notation used in this thesis.

A few additional remarks on the structure of the thesis will help to frame further discus-
sions. This thesis builds upon the underlying assumption that understanding how to evolve
Turing complete algorithms for complex tasks is an important problem.

It could be argued that neural programming and internal reinforcement are solving a
problem that does not exist: "how can gradient descent in program space be accomplished,

18 CHAPTER 1. INTRODUCTION

particularly in a Turing complete2 program space?" Quite the contrary, I feel that solving
this problem is important exactly because it does not come up in evolutionary computation
with regularity. The reason Turing complete programs are almost never evolved is because
a number of critical issues must be addressed before this evolution can happen effectively.
Once we can begin to evolve Turing complete programs, it may quickly become clear that
that is the critical aspect for EC to address. Appendix B explains the complications that
evolving Turing complete algorithms brings to the field of evolutionary computation and has
an important note about the actual computational expressiveness of the programs evolved
in this thesis.

This thesis attempts to address this problem, not to justify this problem's existence. In
particular, no detailed comparisons will be made between PADO and standard Tree-GP as
supporting evidence that PADO is addressing a problem that exists in GP as it is currently
practiced. Similarly, comparison with other ML techniques are not performed because it
does not serve the purposes of this thesis. These comparisons would invite criticism about
the fairness of the comparisons when such comparisons are beside the point; this is not a
"my system outperforms your system" thesis.

The goal of this thesis is to argue, explain, and demonstrate how representation and search
are intimately connected in evolutionary computation and to address these dual concerns in
the context of the evolution of Turing complete programs. Ideally, this thesis will inspire
future research in this same area and along similar lines.

2For a primer on Turing completeness, see [Hopcroft and Ullman, 1979].

Chapter 2

A Brief Overview of Algorithm
Evolution

The title of this thesis is "Algorithm Evolution with Internal Reinforcement for Signal Under-
standing." Before entering into the details of the thesis, this chapter will give an introduction
to and overview of the general field of Algorithm Evolution. Since this chapter has been de-
signed as a general introduction, it is safe to skip to the next chapter if such an overview is
unnecessary for the reader.

2.1 Evolutionary Computation as Machine Learning

Darwin's theory of evolution has been a point of inspiration and reference for the development
of simulated evolutionary computation for learning complex models. The original and most
basic form of this motivation is, "Evolution created complex behavior in the form of homo-
sapiens, so perhaps evolution can be used to create other kinds of complex behavior." The
details of biology and how it affects evolution have informed much of the work done in the
field of Evolutionary Computation (EC).

Search is embedded in most AI algorithms. In particular, machine learning can almost
always be described as a form of search in which there is a space of models to select from and
the problem is to design an algorithm that finds the more desirable models while spending a
minimal amount of time examining models from the space. These models take many forms
in machine learning, from the weights in an ANN to the splits in a decision tree to a vector
of real numbers that optimize some target function. Because search is the basic language
of AI, evolution will be explained in this chapter in terms of search. Notice that simulated
evolution is a form of machine learning.

This thesis refers to a number of terms taken from biology that are now commonly used
in the field of EC. These terms are generally some mechanism in biology that inspired the
EC practice, but the isomorphism between the two may not go below the surface similarity.
Whenever possible, this thesis will attempt to clarify potential confusions arising from these
differences.

The description of a living thing is written in a series of chromosomes. Most multi-celled
living things have many chromosomes in their DNA (RNA in the cases of some organisms),

19

20 CHAPTER 2. A BRIEF OVERVIEW OF ALGORITHM EVOLUTION

but in EC the genetic code for a thing to be evolved is simply called its "chromosome"
(singular). Each chromosome is composed of many genes. The different possible states of
these genes, in biology, are referred to as the alleles. The field of EC has collapsed this
distinction and simply describes the chromosome under evolution as comprised of many
alleles.

There is an important distinction between the genetic code for an organism and the
instantiation of that genetic code as the organism itself. Though both are evolved simul-
taneously and are inexorably linked, there may (or may not) be important reasons for this
distinction to exist in EC1. In biology, the encoding of an organism (the chromosomes) is
referred to as the genotype of that organism (e.g., Astro's DNA). The physical realization
of the organism is referred to as the phenotype of that organism (e.g., Astro). These same
terms (genotype and phenotype) are also used in EC to refer to the description of the thing,
and the thing itself. As will become clear in the following section, this can be confusing
in EC because the genotype and the phenotype are identical in many cases (e.g., standard

Genetic Programming).

In biology, the fitness of an organism is the ability of that individual to live long enough
to produce genetically viable children. In EC the fitness of an evolving individual is generally
the ability of the phenotype of that individual to meet specifications set by that specific EC
system. Examples of such fitness measures will be given through this thesis.

Table 2.1 summarizes the basic process of evolutionary computation.

1. INITIALIZE: Select an initial population of M individuals for generation 0.
Usually these individuals are generated randomly.

2. EVALUATE: Calculate Gp, fitness of population member p.
This fitness can be a quick approximation to a more accurate fitness.

3. REPRODUCE: M times, pick a population member and put it in the mating pool.
This selection is always biased towards high fitness individuals.

4. RECOMBINE: Perform search operations on members of the mating pool.
These operations (recombination operators) are most commonly mutation and crossover.

5. Call this new mating pool the "new population" and go to step 2.

Table 2.1: Outline for the search aspect of Machine Learning using Evolutionary Computation.

The process of EC is a form of the search process called "Beam Search." This relationship
is well explained in [Tackett, 1994].

^his distinction is actually a continuing debate in the field of EC. Appendix G describes the place of
this thesis in that debate.

2.1. EVOLUTIONARY COMPUTATION AS MACHINE LEARNING 21

2.1.1 Details about the EC cycle

Step 1: INITIALIZE

There are three basic options when beginning an EC run.2 The first is to generate the initial
population members randomly. This can be done in a variety of ways and is always specific
at least to the syntax in which the population members are written (i.e., the genotype syntax
for the chromosomes to be evolved). This thesis will describe in detail how this process is
carried out for a number of different representations that PADO has used.

The second option is to initialize the population to be evolved with non-random individ-
uals. These individuals can either have been learned in a previous learning process or can
have been designed by hand (though in that case some element of randomness in varying
these hand-designed individuals is usually used to create a genetically diverse population).
The third option is simply to use an initial population composed largely of random individ-
uals with one or a few non-random individuals included. This process is called seeding the
population in the field of EC.

Step 2: EVALUATE

The process of measuring the fitness of each individual in a population is complex and the
subject for much discussion on a number of different dimensions. For the purposes of this
overview, the most effective communication of this variety will simply be to give a number
of examples.

Suppose that we plan to evolve a good airplane wing. To do this we design a way of
encoding many of the important aspects of standard airplane wings as parameters. This list
of parameters will be the genotype of the airplane wing. With a specific list of parameters,
we could take this list and create a physical realization of the wing (e.g., out of plastic) or a
virtual realization of the wing (e.g., a CAD model). This realization is the phenotype of the
evolving structure. Imagine that we are trying to discover a wing design that has a minimal
drag to lift coefficient. If we have a virtual wind-tunnel, the process for determining the
fitness of chromosome p in the current population could work as follows:

• Take chromosome p and create the phenotype it encodes (a CAD model of the wing).

• Insert this virtual wing into the virtual wind-tunnel and measure the drag a and lift
ß created by this wing under the air conditions of interest.

• Assign the fitness to be Gp = §

In this example, the airplane wings under evolution are said to be encoded by the bitstrings
that represent them. Let's now try another example that bears more directly on the subject
of this thesis: evolution of algorithms. Suppose that we are unaware of the Taylor series
expansion for f(x) = ex but that we would like an approximation to ex using the basic
arithmetic operators (+,—,*,/) plus the operands x and constants. We can define individuals

2 A "run" is a full simulation that takes an initial set of population members through a series of evolu-
tionary steps to some termination point determined by the particular system.

22 CHAPTER 2. A BRIEF OVERVIEW OF ALGORITHM EVOLUTION

in the population as functions (the simplest form of algorithms). These functions can be
simple, like f{x) = (+ x 5), or complex, like f(x) = (* (- (* (+ x 5) (/ x 2)) (* (* (+ 5
3) 2) x)) (* x (/ x 18))). Now we can define the fitness of a chromosome p in the current

population as follows:

• Take chromosome p (which we will call Functp) and create the phenotype. Notice that,
unlike the airplane wing example, this step is a NOP since the phenotype and the
genotype are the same.

• Pick 200 random values for x inside the range of interest (e.g., [-100,100])

• For value Xj (1 < j < 200), define the error for this x value as Ej = (ex> - Funct^x,))2

• Compute the fitness of chromosome p as, Gp = ^ Hj=\ Ej

This particular experiment has been performed and the first several terms of the Taylor's
series were successfully evolved. (See [Koza, 1992] for details).

Notice that in this example, the fitness of each chromosome is an approximation to the
chromosome's "real fitness"3 and that the fitness of chromosome p will be different if tested
more than once. This is not a problem for evolution and, because approximations are usually
cheaper to calculate than exact fitnesses, this is the rule rather than the exception in the
field of EC.

The single most common mechanism for determining the fitness value of each program
is shown in Table 2.2. In machine learning, this process of training with a set of "labeled"
examples is called supervised learning. The referenced experiment for approximating ex is
an example of such a fitness procedure. PADO, NP, and IRNP all exist within the context
of supervised learning.

For each program p in the evolving population
For each training input Si (1 < i ■ < \S\)

Call Li the correct/desired program response (the signal label)
Run program p on input Si and get its response, Rl

p

r _ \s\ nu,R),)
^P — 2^4=1 \s\

Function T differs with each task for which EC is used to create a solution.
Gp is the fitness of program p

Table 2.2: Common calculation of program fitness in the supervised machine learning form of EC.

3As hypothetically measured on all (often infinite in number) possible fitness cases.

2.1. EVOLUTIONARY COMPUTATION AS MACHINE LEARNING 23

Step 3: REPRODUCE

In search there is sometimes a trade-off between exploration and exploitation. Exploration
means trying out options that are believed to be locally sub-optimal (in the hopes that
globally these options will lead to an improved solution). Exploitation means focusing the
search in the areas of the search space that have the highest known fitness values. In some
kinds of search (e.g., simple hill-climbing) this trade-off does not exist, exploration never
happens. However, in some machine learning paradigms (e.g., EC or reinforcement learning),
the opportunity to try out multiple options makes it interesting to consider devoting some
search energy to exploration. So the trade-off is between focus on the good models already
found, and investigation of new models with sub-optimal values in the hope that some of
those new models will lead the search to other models of even higher fitness values.

This trade-off is particularly true/obvious in a highly parallel search like EC. The RE-
PRODUCE step in the process represents the exploitation phase of the search in which we
focus our search towards those areas of the search space that we have reason to believe are
more promising (in EC this is judged through the fitness calculation as described above).

Given that exploitation means focusing the search on high fitness individuals, and given
that each individual in an evolving population represents a unit of search, the way to focus
search is to throw out some of the low fitness individuals and replace them with copies of
the high fitness individuals. There are a number of popular schemes for doing this, primarily
tournament selection, rank selection, and roulette selection (see [Goldberg, 1989] for details).
Table 2.3 outlines tournament selection. Tournament selection is the reproduction strategy
used in NP.

For a population of M individuals, Do M times
Pick K individuals from the population using a uniform random probability.
Of these K individuals, copy the individual with highest fitness into the mating pool.

Table 2.3: Outline of tournament selection in EC.

So this creates, from a population of M individuals, a mating pool of the same size
in which high fitness individuals have higher representation and low fitness individuals have
lower representation. The curve in Figure 2.1 shows this representation "schedule" for K = 5
(the value used in all the experiments in this thesis). This schedule is independent of the size
of M, so Figure 2.1 shows the schedule from 0% to 100%. The important thing to understand
is that K is an important parameter in EC. K can be thought of explicitly as the "greediness"
of the search process. If K = 2 and M = 1024, then it will take at least 10 generations for
a single individual to become effectively the only member represented in the population.
If K = 4 then the floor for this phenomenon is only 5 generations. This phenomenon is
called the convergence of the population. The number of generations until the population
has reached convergence is a complicated matter. K, however, is largely responsible for a
factor called the effective take-over rate. The effective take-over rate expresses how long it
will really take (on average) for the best individual to take over the population, under the

24 CHAPTER 2. A BRIEF OVERVIEW OF ALGORITHM EVOLUTION

assumption that no better individuals are produced during that period. The explanation for
why this rate is not equal to the lower bounds described by the parameter K will be made
clear below.

o
o
D.
O) c

Effective Reproduction Schedule for K=5 under Tournament Selection

CO
3
■a
'>
c

**— o
C/J
<D

a. o
Ü
*
■o
B o a> a.
X
w

0 ' ' =
0 0.2 0.4 0.6 0.8

Percentile Individual in the Population (by fitness)

Figure 2.1: The effective schedule for exploitation created by using tournament selection with
tournaments of size K = 5.

This general model for reproducing the population is usually called the generation model
of reproduction. There is an equally valid model called steady state in which each reproduc-
tion step is the replacement not of one population with a new one, but only the replacement
of a single low fitness individual with a high fitness individual. Though there is some dis-
agreement about this, the general consensus is that these two approaches are equivalent in
most important respects (see [Kinnear, Jr., 1993] for discussion). Although PADO oper-
ates on the generation model, it could be trivially modified to the steady-state model of
reproduction.

Step 4: RECOMBINE

Evolutionary Computation must, by definition, include an aspect of exploration as well as
an aspect of exploitation. To see why this is the case, imagine evolving a population of indi-
viduals in which fitness proportionate reproduction is done using, for example, tournament
selection, but then this Mating Pool is moved to the next generation with no changes made
to any of the component individuals4. For generation 0, there will be some individual p that
has the maximum fitness for the population. After t generations of fitness measuring and
fitness proportionate reproduction, there will be K1 copies of p in the population. Even for
a population of 1,000,000 individuals, with K = 5, the entire population will be copies of

Exploitation does not mean that there is no change. It means that the change is monotonic improvement,
given what is known. But this is exactly the problem with EC. Right now there is no way to guarantee that
a program transformation will improve the program's performance.

2.1. EVOL UTIONARY COMP UTATION AS MA CHINE LEARNING 25

individual p after 9 generations. The reason evolution does not run quickly into this dead-
end is that there is an opportunity for improvement; before individual p can take over the
population, some new individual p' is created through the recombination process such that
the fitness of p' is larger than the fitness of p.

This part of the search process, in which selected individuals are changed in an attempt
to find even better parts of the search space, is called genetic recombination. That is, genetic
recombination is the exploration aspect of search in EC. The two most popular forms of
genetic recombination are crossover and mutation. What follows are one example each of
the most common forms of crossover and mutation: subtree crossover and point mutation.

Crossover

In crossover, two or more individuals are chosen and some "genetic material" is exchanged
between them. The hope is that high fitness individuals are made up of "building blocks"
and that these building blocks can be reshuffled among high fitness individuals with positive
effect at least some of the time. Crossover is often referred to in EC as sexual recombination
to indicate that the inspiration for crossover is the apparent usefulness of the sharing of
genetic material that takes place in the sexual reproductive process of most animals.

As an example of crossover, let us return to the example of evolving an arithmetic for-
mula using only the operators +, —, *, / and the operands x and constants to approximate
ex. Crossover is explained here in the context and representation of standard genetic pro-
gramming because that paradigm and representation will be referenced most heavily later
in the thesis. Figure 2.2 shows two example individuals, written in a"tree structured format
to make them easier to understand (as is traditional in Genetic Programming).

©
©

Figure 2.2: Two example functions in a hypothesized evolution example, before crossover.

The details of the crossover mechanism vary widely through EC because the represen-
tations in which this crossover takes place also varies widely. The common thread that
identifies a search operator in EC as "crossover" is the exchange of material between two
or more population members. Although the following is not a defining characteristic of
crossover, it is almost always the case in EC, as it is currently practiced, that when mate-
rial is selected for this genetic exchange, the material is chosen at random (or nearly at
random). The traditional GP crossover procedure is "choose one random subtree from each
program and exchange the subtrees."

The two individuals in Figure 2.2 can alternately be written as (* (+ x 5)(- (/ x x) 2))
and (+ 1 (/ x 2)). Notice that one of the convenient aspects of the s-expression, functional

26 CHAPTER 2. A BRIEF OVERVIEW OF ALGORITHM EVOLUTION

expression, or tree representation as it is often called, is that (unless there is added typing
in the functions) any two subtrees can be exchanged between programs and the resulting
programs will still be viable (i.e., syntactically legal). For an example of crossover, Figure 2.3
shows the new individuals if these two bold faced pieces were exchanged: (* (+ x 5)(- (/ x
x) 2)) and (+ 1 (/ x 2)), resulting in the two new functions: (* (+ (/ x 2) 5)(- (/ x x) 2
)) and (+ 1 x).

Figure 2.3: The two example functions from Figure 2.2 after crossover. The dashed lines indicated
the exchanged genetic material (sub-functions in this case).

It should be noted that there is a disagreement about the added value (over mutation) of
crossover as a search mechanism in biology as well as in EC (e.g., [Gathercole and Ross, 1996,
Chellapilla, 1997, Angeline, 1997b]). In fact, two of the four main areas of EC, namely
Evolutionary Strategies (ES) and Evolutionary Programming (EP), use no crossover at all.
The author of this thesis is not convinced that crossover provides no additional benefit and
as such, this thesis will address both crossover and mutation when the issue of recombination
surfaces (as it does repeatedly in later chapters).

Mutation

In the recombination search operator called mutation, a single individual is taken and
changed in some way that is independent of the other members of the population. This
style of simulated evolution search operator is inspired by the biological genetic recombi-
nation process of mutation. Mutation in chromosomes can happen either because a gene
is changed through the proverbial "cosmic ray" or through a mis-copying that takes place
while a cell is being duplicated.

As an example of mutation, let us continue with the example of evolving an arithmetic
formula using only the operators +,—,*,/ and the operands x and constants to approximate
(fit) a set of data points. This time the two functions shown in Figure 2.2 will be changed
through mutation. This means that some part of the individual (function) will be selected
and changed to a new value (a new subtree in this particular genotype representation). How
these subtrees to be changed are selected and how the subtrees to replace them are created
will be addressed in detail later in this thesis. Figure 2.4 illustrates the mutation (subtree
replacement) process in GP.

The details of the mutation mechanism vary widely through EC because the representa-
tions in which mutation takes place vary widely. The common thread that identifies a search

2.2. EVOLUTION OF ALGORITHMS 27

Figure 2.4: The two example functions from Figure 2.2 after mutation.

operator in EC as "mutation" is the creation of new genetic material and the replacement
of existing genetic material in an individual with this created genetic material. Although
the following is not a defining characteristic of mutation, it is almost always the case in EC,
as it is currently practiced, that when material is selected for this genetic replacement, the
material is chosen at random (or nearly at random).

2.1.2 Implications for this Thesis

In summary, there are three main phases of the EC learning loop and this thesis contributes
novel aspects to one of them:

t Evaluation of the fitnesses of each individual
It is not with this aspect of EC that this thesis takes issue.

• Fitness-proportionate reproduction into a mating pool
It is not with this aspect of EC that this thesis takes issue.

• Genetic recombination of the mating pool
It is with this aspect of EC that this thesis takes issue. There is no evidence that the
aimless recombination that is so common in EC is better than focused recombination.
On the other hand, this thesis provides specific evidence that there is something useful
about carefully and purposefully choosing pieces of material to change or exchange
during program transformations.

2.2 Evolution of Algorithms

The four main areas of Evolutionary Computation are, roughly, Evolutionary Strategies (ES),
Genetic Algorithms (GA), Evolutionary Programming (EP), and Genetic Programming.
Two additional fields, ALIFE and theoretical biological modelling, are closely related to EC
but will not be described in this chapter.

Of these four disciplines, the work of this thesis is mostly closely related to genetic
programming. As such, this section will first describe the standard genetic programming
paradigm followed by the ways in which the other three areas differ from GP. It is im-
portant to note that historically, this is backwards. The correct historical order for the

28 CHAPTER 2. A BRIEF OVERVIEW OF ALGORITHM EVOLUTION

appearance of these disciplines is Evolutionary Strategies [Rechenberg, 1965], Evolution-
ary Programming [Fogel et al., 1966], Genetic Algorithms [Holland, 1975], and then most
recently, Genetic Programming [Koza, 1992].

One of the main attractions of evolutionary computation (in all of the flavors just men-
tioned) is that EC is trivially parallelizable. In fact, there is ample evidence that parallelizing
EC often provides a super-linear speed-up.5

2.2.1 Genetic Programming

This subsection will give only the highest level impression of GP as an instantiation of EC.
The best sources for learning more about GP are [Koza, 1992, Koza, 1994, Kinnear, Jr., 1994,

Angeline and Kinnear, Jr., 1996].
The most important aspect of an instantiation of EC is the representation of the individ-

uals to be evolved. In genetic programming, individuals are called functions or a program
and are usually written in a functional, lisp-like structure called an s-expression. A simple
example of such a function would be (* (+ (/ x 2) 5)(- (/ x x) 2)) and can be written as
a tree (as shown in the previous section). The next chapter will make a case for the fact
that functions are not the same as programs (even practically) and that the distinction is
an important research question.

The atomic units with which these functions are constructed (i.e., the alleles out of
which the chromosome is built) are called non-terminals for the positive-arity actions (e.g.,
+, —, *, /, cos, IF-THEN-ELSE) and terminals for the zero-arity actions (e.g., X, input-18,
17.98876). Notice that this representation just described is the genotype for evolution, but
the phenotype (the actual thing to be tested that is created using a particular genotype as
a blue-print) is the same. A GP function can be run "exactly as it is."6 That is to say,
GP functions can usually be interpreted directly, rather than going through a translation or

compilation phase.
Typically, GP functions are evolved through the generational model rather than the

steady-state model. It is traditional to denote the size of the population by M and the size
of the tournaments (when using'tournament selection) K.

After creating a mating pool through fitness proportionate selection, the standard GP
paradigm usually divides the genetic recombination stage into two aspects. First, Pc% of
the functions in the mating pool are subjected to crossover. Second, Pm% of the functions
in the mating pool are subjected to mutation. Typically 90% < Pc + Pm < 99%

Although crossover in GP has a number of different styles, all have the same important
foundation. The process is to choose two subtrees at random and exchange.them. In
Mutation, the function is taken, a random subtree is chosen, a new random subtree is
created, and this newly created subtree replaces the subtree just removed. One of the major
contributions of this thesis is the answer to the question, "What can we do in the evolution
of algorithms that is better than recombination at random?"7

5This phenomena, "the island model," has been discussed in works such as [Collins, 1992].
6In fact, GP was first implemented in lisp for this exact reason. In lisp, since data can be executed, the

GP functions were stored as data in the form of pieces of lisp code that could be directly executed.
7The use of "random" in this context does not necessarily imply uniform distribution, but refers to the

2.2. EVOLUTION OF ALGORITHMS 29

2.2.2 Genetic Algorithms, Evolutionary Strategies, and Evolu-
tionary Programming

Genetic Algorithms differ from Genetic Programming mainly in the representation of the
evolving individuals. While in GP those individuals were represented as S-expression func-
tions, in GA an individual is represented as a bitstring. This is a case in EC where genotype
is not the same as the phenotype. The genotype in the case of GA is the bitstring. This
bitstring can encode almost anything. For example, imagine that each chromosome is ex-
actly 100 bits long and that each series of 10 consecutive bits encodes a value in the range
[0,4095]. These 10 values might be parameters that, when properly optimized, describe an
airplane wing with particular, desirable properties.

There are three popular forms of crossover in GA. One point crossover simply divides
each bitstring into two pieces and exchanges the first section of each bitstring. This crossover
is shown in Figure 2.5. In two point crossover, a consecutive series of bits in each bitstring
is selected and exchanged. In uniform crossover, each bit is independently and with low
probability, swapped for the bit in its equivalent position in the other string.

110 1

[0 1 11 0 j 0 j 0 [110 1

Figure 2.5: Two example functions in this hypothesized evolution example, before and after
crossover.

A common GA mutation strategy is that each bit is, with some low probability, flipped
to the opposite value.

The bitstrings for the individuals in a GA do not have to be of a fixed length (though they
often are for a variety of reasons). GP can be seen as a subset of GA in the following sense.
Imagine a GA that uses a variable length bitstring. Each GA chromosome is a bitstring and
each series of 5 consecutive bits encodes 1 of 32 different terminals or non-terminals. If we
now constrain the definition of crossover and mutation to match those of the GP paradigm,
we have effectively embedded GP in a GA. In fact, GP is sometimes referred to as variable
length, tree-based genetic algorithms.

In most other respects GA and GP are similar in tradition (e.g., the use of tournament
selection or the generational model for simulated evolution). This is no surprise since, by
most accounts, GP is one of the most promising progeny of the GA field. It is worth noting
that while GP was an attempt to add to the GA paradigm a representation that worked
better with the crossover operator, work in Messy GA (e.g., [Goldberg et al., 1989]) has
improved the GA field in some of the same ways.

independence from syntactic and semantic factors of the evolving programs that this thesis work capitalizes
on.

30 CHAPTER 2. A BRIEF OVERVIEW OF ALGORITHM EVOLUTION

Evolutionary Strategies differs from GA in three main ways. The first is generally that
chromosomes in ES are floating point numbers rather than bits. The second is that mutation
changes many or all of the values in a chromosome by convolving them with a Gaussian.
The third is that ES typically uses a version of the steady-state evolutionary model. ES can
be characterized as a form of parallel hill-climbing.

Evolutionary programming used to be the study of how to evolve finite state machines to
recognize or reject strings correctly according to some target regular language. The EP field
has changed dramatically since its introduction and now the two main differences between
EP and GA are that EP uses only mutation (while GA also uses crossover) and that in EP
there is no restriction on the genome type (as opposed to the bitstring representation so
common in GA). However, because it has more bearing on the work in this thesis, EP will
be addressed here in terms of mutation search through FSM space. Figure 2.6 shows an
example of the phenotype of a simple finite state machine (FSM). The genotype is generally
in a different representation whose details are not important for this overview.

Figure 2.6: An example Finite State Machine (FSM) under evolution in an EP system

EP's recombination is entirely mutation, there is typically no crossover among the FSMs [Fo-
gel et ß/., 1966]. EP, like ES, has traditionally favored the steady-state evolutionary model
over the generational evolutionary model.

Chapter 3

The PADO Approach

PADO (Parallel Algorithm Discovery and Orchestration) is a machine learning tool specifi-
cially designed for tackling signal classification problems. PADO is one of the contributions
of this thesis and is the context in which the other contributions will be explained and
evaluated. This chapter describes the essential aspects of the PADO approach to signal
classification and its associated benefits and trade-offs.

3.1 A PADO Overview

This section is set up to provide the reader with a clear picture of where PADO fits in the
field of GP and the terminology that will later be used to refer to aspects of the PADO
approach.

At the highest level, PADO is a supervised learning algorithm for automatically creating
an executable program1 that can do a variety of signal understanding tasks on complex
signals it has never seen before. The input required to the PADO system is a set of signals, a
set of accompanying labels such that each signal has a corresponding label that describes the
feature PADO should learn to associate with that sort of signal, and a set of parameterized
signal primitives (PSPs). This high level process is shown in Figure 3.1.

The first of the three inputs (labeled 1 in Figure 3.1) to the PADO system is a set
of signals. For PADO, a signal can be any set of information. The distinction between
signals and symbols is the type distinction between the signals and their associated labels (as
specified by some supervisor). In practice, signals take on a number of common conceptual
forms and many instantiations of each of these conceptual forms. For example, acoustic,
visual, and text "signals" are certainly three prevalent types of information blocks available to
anyone and any machine on-line. For a particular signal conceptual type (e.g., visual signals)
there are many instantiations (e.g., jpeg images, gif images, pict images). PADO can work
with any conceptual signal type and any instantiation of those types.2 In Chapter 7, PADO
will be shown working on signals as diverse as sounds, images, and amino acid sequences.

xThis executable program is made up of many smaller, individually-learned programs as described later
in this chapter.

2That is, nothing in PADO has made a commitment to any of these issues.

31

32 CHAPTER 3. THE PADO APPROACH

A set of signals

A set of labels

Learning
Parameters

The PADO learning
mechanism

A learned, executable
signal classifier

A set of parameterized
signal primitives

Figure 3.1: PADO as a learning method.

The second of the three inputs to the PADO system is a set of labels (symbols). There
must be one label for each signal given to the PADO system. These labels can, like the
signals, be of any form. PADO requires only that the labels be ordered values (e.g., 5.5,
19.10, 0.004), in which case the problem is a target value approximation problem, or that
they be unordered values (e.g., "cloudy day photo", "sunny day photo", "rainy day photo")
in which case the problem is considered by PADO to be a classification problem (i.e., "for
each signal you see, learn to identify what sort of a weather-day the photo was taken on").
In this sense PADO is a supervised machine learning system.

The third input that PADO must have is a set of parameterized signal primitives (PSPs).
As will be described at length in the rest of this chapter, PADO learns the desired mapping
from signals to symbols by evolving programs in a supervised framework. Since PADO makes
no assumptions about what form the signals will take, the user of the PADO system must
provide the ways for evolving programs to examine the signals in question. For example, in
Section 7.6, PADO is shown learning to distinguish classes of proteins. The signals in this
case are strings of characters that represent the strings of amino acids that make up each
protein. The labels in this case are one of five protein classes that define the problem. One
of the parameterized signal primitives, PSP-Hydro, takes two parameters (start and stop).
This PSP returns the amount of hydrophobicity/aliphaticity3 of the amino acids in the amino
acid sequence interval [start,stop]. What hydrophobicity/aliphaticity is and whether it is a
useful view of the signals (with respect to solving this particular classification problem) is
the responsibility of the user.

The parameterized signal primitives can be viewed as replacing brittle and equally design-
time consuming pre-processing of the signals. A simple example will help to explain the sort
of functionality that can be easily placed in the parameterized signal primitives. AVERAGE
is a signal primitive that has been used in much past PADO work. AVERAGE is a function
(written in C) that takes four values (x1,yi,x2,y2), and returns the average intensity value
in the rectangle of the image signal with upper left corner (xuyi) and lower right corner

(32,3/2)-
It is important to clearly draw the distinction between pre-processed features and pa-

rameterized signal primitives. PSPs allow the evolving programs to foveate on the signals.

3These are chemical/biological terms explained briefly in Appendix D.

3.2. THE PADO INTERNALS 33

This can only happen through parameterization or through selection of existing options.
When there are very few features, providing them all is both simple and cheap while PSPs
are unnecessarily time consuming. However, in the PSP-Hydro primitive for example (see
section 7.6.2), there are about 500,000 possible features for each signal. And there are PSPs
used in experiments reported in this thesis that give the programs access to over one billion
features through the use of four parameters. Clearly providing all one billion features to
each evolving program is not the right solution.

Now let us look down into boxes 4 and 6 from Figure 3.1. PADO starts by breaking
down the classification problem to be solved into as many different smaller problems as
there are classes to be distinguished between. These sub-problems are all learned in parallel
by PADO using evolution as the driving learning force. Periodically, good programs for
the solution of each of these sub-problems are chosen and grouped in order to produce a
complete executable system (box 6 from Figure 3.1). This executable, orchestrated set of
evolved (learned) programs is then tested against a set of signals that are not part of the
training signal set. Figure 3.2 shows this basic process. Section 3.2 contains details on each
of the steps in Figure 3.2.

A learned, executable
signal classifier

NP program

Figure 3.2: An Overview of the PADO internal workings.

This hold-out set of signals not included in the input signal set in no way affects the output
of the PADO process, rather it is useful for determining how successfully the executable
system output by the PADO process generalizes to unseen data. That is, after all, the real
goal of the PADO system: to take as input a few signals and to learn enough from them
to generalize to many other signals from the same problem domain (i.e. from the same
signal/symbol distribution).

3.2 The PADO Internals

Clearly, any solution to the signal-to-symbol problem needs to be grounded in an algorithm
that processes signal values from a signal. Consider the particular task of differentiating
between many different signals. This task can be solved by learning a separate algorithm for
discriminating signals of each signal class.

34 CHAPTER 3. THE PADO APPROACH

The new architecture of this thesis, PADO, is a technique for learning these algorithms
directly so that there is no built-in commitment to the manner in which an algorithm in-
vestigates the signal and arrives at a decision. No features are chosen for PADO and no
attention-focusing strategy is built in. PADO uses an evolutionary strategy to accomplish

this learning process.
The goal of the PADO architecture is to learn to take signals as input and output cor-

rect labels. When there are C classes to choose from, PADO learns C different,
simpler4 discrimination-solutions. Discrimination-Solution i is responsible for taking a sig-
nal as input and returning a confidence that class i is the correct label.5 Clearly, if all C
discrimination-solutions worked perfectly, labeling each signal correctly would be as simple as
picking the unique high confidence value. If, for example, discrimination-solution i returned
a high confidence value, then the correct class label would necessarily be i. In practice, none
of the C learned discrimination-solutions will work perfectly. This leads us to the recurring

two questions of the PADO architecture:

1. "How does PADO learn good components (i.e. discrimination-solutions or programs)?"

2. "How does PADO orchestrate them for maximum effect?"

We will explain how PADO orchestrates these discrimination-solutions in Section 3.3.
Now, let's delve into how one of these discrimination-solutions is built.

Discrimination-solution i is built out of a few programs. Each of these programs does
exactly what the discrimination-solution as a whole does: it takes a signal as input and
returns a confidence value that label i is the correct label. This use of multiple programs
with the same general behavior is not redundant. In fact, this can be viewed as a "mixture
of experts" problem. The insight is that many programs (models in the general case) that
have slightly different behaviors but the same basic goal (i.e., have been trained to do well at
the same task) can be coordinated so that the mixture of these experts does better than an
individual expert by itself. Further information about these strategies can be seen in works
such as [Littlestone, 1988], [Blum, 1995], and [Littlestone and Warmuth, 1994]. Evolution
is a successful strategy for machine learning, and one of the insights of PADO is that a
large group of experts is available as a side-effect of the population based learning. PADO's
orchestration of these programs into a single discrimination-solution will be discussed in
Section 3.3. Discrimination-solution i is then built out of a few programs by taking and
combining (orchestrating) their responses. This orchestration will be discussed more in this
chapter and the next.

The programs learned by PADO could be learned in a wide variety of representations.
Appendix F gives details on representations that PADO has used in the past. Chapter 5
gives details on PADO's current algorithm representation: neural programming. To prevent
a distracting, inserted discussion, details about neural programming will be postponed until
that chapter. At the beginning of a learning session, the main population is filled with M

4The assumption being made is that it is easier to learn a problem of the form "Is this from class i or
not?" than to learn a problem of the form "Which of C classes is this signal a member?"

5For this thesis, all the discrimination-solutions use the same range of confidence values. However, it
would be simple to adjust PADO to work with varying ranges if necessary.

3.2. THE PADO INTERNALS 35

programs that have been randomly generated using a grammar for the legal syntax of the
language6. All programs in this language are constrained by the syntax to return a number
that is interpreted as a confidence value between some minimum confidence (MinConfidence)
and some maximum confidence (MaxConfidence).

At the beginning of a new generation, each program in the population is presented with |,S|
training signals and the \S\ confidence values it returns are recorded. Then the population
is divided into C distinct groups of size M/C. The programs in group i are (within the
constraint that each discrimination-solution is of size M/C) the programs that recognized
class i better than any other class in the sense that they maximized a reward function
Reward when c = i (c is the class to which PADO is considering assigning program p)7.
Table 3.1 shows this fitness computation,in PADO.

int Reward (program p, class c, int GuessQ) Guess(p,j) is the
Reward = 0; confidence program p
Loop j = 1 to \S\ returned for signal j

If (c = Lj) Then
Reward = Reward + ((C — 1) * Guess(p,j);

Else C is the number of classes.
Reward = Reward — Guess(p,j); Lj is the class label

return REWARD; for signal j.

Table 3.1: The function for computing the fitness of program p in PADO if p is a discrimination
program for class c.

Table 3.1 shows the procedure for computing the fitness for a program p under the as-
sumption that p is a discriminator for signals of class c. This function is the sum of confidence
errors across all \S\ training signals with the reward for those signals from class c weighted
by a factor of C — 1. Because programs may migrate from one pool to another, the fitness
finally assigned to program p is the maximum of the returned values of Reward(p,c,Guess())
for 1 < c < C.

The result of this training and division of the population can be described in another
way. Imagine C different populations; the population i is composed of programs learning to
discriminate signals of class i from all other signals. We will call such a sub-population a
discrimination pool. Now we can measure each program and call its fitness the reward it gets
from the Reward function just described. As will be described in a moment, the programs
in these discrimination pools will undergo change over time (evolution is a form of search
after all).

6PADO can accept non-random programs in its initial population. These can either be good programs
from previous runs or even programs written by the user. This ability to express domain knowledge in code
fragments to seed in the initial population is another example of EC's (and therefore PADO's) ability to
accept a user's knowledge in a language which is natural to them.

7Though no detailed claim is being made, the PADO process of learning (evolving) and then deciding
how best to interpret what has been learned (through the fitness "shuffling" of the Reward function) can be
seen as a form of the EM algorithm.

36 CHAPTER 3. THE PADO APPROACH

After these changes to the discrimination pool programs, not only will some programs
be better than others in discrimination pool i, but some programs will (with very high
probability) have worse fitness than a program that guessed a class randomly would have.
This form of divide and conquer for classification has the following property. Such a program
(with fitness worse than random guessing) must by definition have better than random
guessing fitness in some other discrimination pool j (j ^ i). So it would clearly be a benefit
to move these very poor fitness programs to more appropriate discrimination pools. This
is, effectively, what is happening in the processes described in the previous paragraph. This
method for dividing the population into discrimination pools and then exchanging individuals
when appropriate after the programs have been altered as part of the search process is called
discrimination pool guided migration.

On signals that the program should return MaxConfidence for, the reward is multiplied
by C — 1 so that, even though this only happens once in C times (assuming there are an
equal number of training examples from each class), these signals will account for half the
reward. This strategy values accuracy and coverage equally; the assumption is that it is as
important to say "YES" when appropriate as it is to say "NO" when appropriate since these
two cases are coverage and accuracy respectively. This normalization provides, on average,
zero reward for a purely random classification strategy. Clearly, if the accuracy/coverage
importance ratio is not 1 in a particular application, then it is trivial to modify.

Each discrimination pool is then sorted by increasing fitness and each program is ranked
accordingly. C "mating pools" (temporary discrimination pools) are created in the following
way. M/C times, K programs are chosen at random from Group,-. This method is called
7\-way tournament selection and is the fitness proportionate reproduction strategy of PADO.

Finally, the programs within each mating pool are subjected to crossover and mutation.
All crossovers take place between two programs in the same mating pool. That means they
are both recognizers of the same class. Much more will be said about how these search
operators are constructed and used later in the thesis.

At this point the C mating pools are merged back into a new total population. Now the
process of evaluation, reproduction, and recombination repeats. After many generations we
find that the best programs in the population are much better than any that were created
(randomly) at the start of the process.

To extract programs to use in the discrimination-solutions, we can pause the process
after the evaluation step of a generation and copy out those programs that scored best or
near best in each group i.

3.3 Orchestration

There are many cases in which a task to be approached with machine learning techniques can
be or must be solved in more that one "piece." Learning a team of robotic soccer players
is a good example of a task that could conceivably be done as a single agent, but lends
itself very naturally toward learning sub-solutions (e.g., [Kitano et aL, 1997]) and then (or in
addition) learning to ensure the mutual suitability of these sub-solutions [Andre and Teller,
1998]. This insurance of mutual suitability is the orchestration problem.

3.3. ORCHESTRATION 37

EC is a natural machine learning environment in which to find many behaviorally distinct
models. PADO is a process of divide and conquer accomplished through the evolution
of multiple pools of sub-solutions and the following orchestration of one or more learned
programs from each pool.

One of the questions of this thesis is, "What opportunities are there for learning in
the orchestration process and how much improvement can this learning provide?" The
contributions of this part of the thesis will:

• Demonstrate the feasibility of PADO's divide and conquer strategy and suggest its
preferability to unconstrained learning.

• Provide a specific justification for maintaining a population, a recurring issue in evo-
lutionary computation.8

• Describe a number of specific techniques for orchestration learning and, through their
successful application, demonstrate that orchestration is an important issue and that
learned orchestration can dramatically improve generalization performance.

The basic justification for subdividing work as PADO does is this: it is usually preferable
to search C spaces of size 2J rather than one space of size 2ci (j > 1). If we can find a
good way to divide up a problem, then this kind of exponential reduction in computational
effort may be possible, at some cost in recombining these separate solutions afterwards9.
If we want to automate this process of learning, we had better be able to automatically
pick this division into sub-problems. As was outlined in Section 3.2, signal classification
for C classes is accomplished in PADO by the orchestration of C different discrimination-
solutions. Each of these discrimination-solutions is composed of the B most fit programs
from the corresponding group of the current generation.

Discrimination-solution; is built from the B programs that best10 learned to recognize a
signal from class i using a function FL- For example, the B responses that the B programs re-
turn on seeing a particular signal can all be weighted, and their weighted average of responses
interpreted as the confidence that Discrimination-solution; has that the signal in question
is from class i. PADO does signal classification by orchestrating the responses of the C
discrimination-solutions. On a particular test case, the function FJJ (e.g., Weighted-MAX or
Nearest-Neighbor) takes that function of the confidences from each Discrimination-solution;
and selects one class as the signal class. Figure 3.3 pictures this orchestration learning
process.

It is important to notice that the relation between the B responses in a particular
discrimination-solution and the correct confidence may be non-linear. Similarly, the relation
of the responses of the C discrimination-solutions to the correct symbol return value may be
non-linear. For both these cases, the term non-linear refers here to the possibility that the
mapping (function) between the response vector and the correct label is multi-modal. Much
more will be said about orchestration and the issue of non-linearity in Chapter 4.

8See [Baluja and Caruana, 1995, Baluja, 1996] for arguments against populations.
9 Teasing apart the separate costs of orchestration and cost saving of divide and conquer in PADO is

outside the scope of this thesis but would be a valuable piece of future work on this subject.
10Based on the training results from that generation.

38 CHAPTER 3. THE PADO APPROACH

Signal Classification—*" F^lJ^ » OutputQKscrimination-Solution.) I

♦
Wi/ w2. W3\ w. Wc

I
I

Discrimination-Solirtionj Confidence Fz, \Vj * Output(Program)_\
j = l

Prog* Prog* ProgJ Progf.. Prog7

'"■M Prog*

Si£ ins L1

" At this layer, a set of discrimination-solution confidences
is taken and orchestrated.

This level of orchestration returns a classification, not
a confidence (as does the lower level orchestration).

At this layer, a set of B evolved programs is shown a signal.
Each program examines that signal and returns a confidence

that the signal comes from some class I.
Then these confidences are orchestrated and that

orchestration returns a discrimination-solution confidence
for class I.

Figure 3.3: Orchestration in PADO. The weight vectors Vj and W,- are also learned.

3.4 Algorithm Evolution

3.4.1 Using GP to Evolve Turing Complete Programs

Genetic programming, as generally practiced today, does not evolve programs with access
to both memory and recursion/iteration. Back in 1993, the two reasons for this were that
neither memory nor looping/recursive constructs had really been worked into the paradigm.
[Teller, 1994a] introduced expandable memory into GP ("indexed memory") and mentioned
that a looping or recursive construct was all that was needed to make GP Turing complete.
Later, [Teller, 1994b] gave a specific format for looping in GP and gave a formal proof that
this new paradigm was Turing complete. This format included three simple rules not part of
the contemporary GP toolbox. First, allow READ and WRITE non-terminals and allocate
memory as needed for array positions specified by these two functions. Second, at the end
of each tree evaluation, re-evaluate the tree (instead of stopping as a traditional tree-GP
system would do). Third, stop this repeated evaluation only when "halt" is indicated by a
specific value in a specific memory location.

This summary is not meant to suggest either that this was a great surprise to GP commu-
nity or that this was first evolution of Turing complete systems (see Chapter 8 for previous
examples). [Teller, 1994b] did, however, coincide with increased interest in Turing complete
GP systems.

One of the main thrusts of this thesis is the efficient and effective evolution of algorithms
that are written in a Turing complete language. It is known to be qualitatively harder to
evolve such programs (relative to the functions traditionally evolved in GP). Appendix B
includes a short discussion of why Turing complete programs are harder to learn/evolve
and why they are worth the extra effort. Also, Section 7.5 demonstrates that the evolving
programs really can take advantage of additional examination time when it is given to them.

3.4. ALGORITHM EVOLUTION 39

3.4.2 Algorithm Representation in GP

PADO has moved through a series of representations for program evolution that will not be
discussed in the main body of this thesis and are only summarized in Appendix F. [Teller,
1994b, Teller and Veloso, 1997, Teller, 1996] track the history of PADO program representa-
tions. PADO has moved to a still newer representation that is a significant departure from
past work. This newest representation, Neural Programming, has brought PADO in line
with the thesis objectives. Neural Programming is the culmination of a research program
aimed at more control and better understanding of the evolutionary computation process.
The entirety of Chapter 5 is devoted to describing this representation.

On the representation topic, it is important to give some idea about what the atomic
units of computation in PADO have been in the past and are in this thesis. Table 3.2
shows the standard PADO actions. In seven domains that PADO was applied to, this exact
set of actions was used for all experiments. This demonstrates that PADO can work on a
variety of domains without altering its node action set, except for appropriate changes to
the parameterized signal primitives.

Table 3.2: Standard PADO node actions
Continuous Boolean Choice Memory Signal PSP Constant
Add Max If-the-Else Read SignalPrimitive0 O..MaxValue
Sub Min PIFTE11 Write
Mult Less
Div Equal

Not SignalPrimitivej

3.4.3 The Halting Problem

A succinct definition of the halting problem is "It is impossible to determine in any finite
amount of time whether or not an arbitrary program written in a Turing complete language
will halt on an arbitrary input." This poses a problem for PADO. In the evolution of
algorithms we need to run each program in the population on a number of inputs and
measure their fitness according to their responses to those inputs. If we have to wait for
all of the programs to finish, and some may never finish, simulated evolution is sunk. The
halting problem tells us that we cannot just "look at the program and see that it will never
finish." We can do that for many programs ([Maxwell III, 1994]) but not for all of them.
Since PADO has committed to evolving programs that have the potential to run forever,
some addition must be made to the paradigm to address the halting problem.

The solution taken by PADO in all three of its representations to date is to require that
evolving programs be anytime algorithms. This means that an answer can be extracted
from a program at any point during the program's execution. In all three representations,
this can be accomplished by simply expecting the program's response to be updated as it

11 Probabilistic If-Then-Else. This has an interesting smoothing effect on program spaces.

40 CHAPTER 3. THE PADO APPROACH

improves and stored in a particular memory slot. Then when the environment reaches some
time threshold, the answer is taken from that part of the program's memory, whether or not
the program has halted.12 This forces programs to learn not only to solve the problem, but
also to store that solution in a specific piece of memory. This is an elegant way to solve the
halting problem for simulated evolution but there is evidence that this method can hinder as
well as help the learning system, depending on the problem to be solved. [Andre and Teller,
1996] has more details on these trade-offs.

This term "anytime algorithm" does not seem like an important distinction from tradi-
tional tree-structure GP program only because those programs do not run long enough until
they halt to be an issue. But consider that in order to get the "answer" from a GP-tree, the
entire tree must be evaluated. If the entire tree is not evaluated, the response is undefined.
And defining a default response for a prematurely halted GP-tree is still not an anytime
algorithm because there is no opportunity for the GP-tree to iteratively improve its response

until that response is required.

3.5 Striping PADO Down to the Essentials

This chapter of the thesis has given details about the basic PADO structure. After this
chapter, the thesis uses experimental evidence to demonstrate many of the claims (about
PADO and neural programming) that are made. These demonstrations must be done in a
specific instantiation of PADO, not a hypothetical or abstract version of PADO. This section
gives details about the specific PADO system used to illuminate the more theoretical claims
of this thesis. Thus, from this point forward in the thesis (unless otherwise noted) references
to PADO refer to this specific thesis instantiation of the method.

Before the details of the current PADO system are described, it is worth mentioning
why this particular PADO system was chosen for the thesis embodiment. As may be seen
from the previous sections of this chapter, there are a number of issues (several of them
novel) all of which have been part of the changing PADO system over the years. The more
these disparate issues remain in PADO, the more complicated it would be to sort out the
responsibility for success or failure in particular experiments.

This leads to the question, "Is this thesis primarily about the theory or primarily about
the results?" The thesis is only valuable if both aspects exist in good measure, but the
decision was made to focus on making clear the theoretical contributions, even at the expense
of a few percentage points in the experimental results. As a result, while some of the issues
discussed in the previous section are legitimately part of PADO, they were purposefully
excluded from the implemented thesis version of PADO in order to maintain the desired
clarity of contribution.

Orchestration for PADO

Clearly some specific representation had to be chosen for PADO. That representation, as has
already been mentioned, is Neural Programming (NP). The entirety of Chapter 5 is devoted

12In fact, in the current PADO representation, Neural Programming, there is no built-in mechanism for
halting since it was designed to be used in this anytime way.

3.5. STRIPING PADO DOWN TO THE ESSENTIALS 41

to detailing the NP programming language.
PADO was described as orchestrating at many different levels and at many different

times. The main choices were:

• How many programs to take from each discrimination pool? - (B)

• How to pick those programs?

• How to orchestrate those programs into a discrimination-solution? - (FL)

• How to orchestrate these discrimination-solutions into a full PADO system? - (FH)

• Does this orchestration happen during or after training (or both)?

• Does this orchestration use the training data or a separate hold-out set?

Here is what was chosen:

• One program from each discrimination pool. - (B = 1)

• How to pick this one program will be addressed in the next chapter.

• No orchestration necessary within Discrimination-solutions. - (FL = NOP)

• How these C programs will be orchestrated is the subject of the next chapter.

• Orchestration will only take place during training.

• Orchestration will be based entirely on the same training data.

Program Representation in PADO

The impetus for PADO's move away from traditional GP representations was the desire to
efficiently evolve programs written in a Turing complete language. The hypothesis is that
many difficult problems (particularly ones in which foveation is required) are much easier
to solve when iterations (or recursion) and memory are aspects of the learned model. In
the first two PADO representations (described in Appendix F), memory was included in the
learned models through the use of Indexed Memory primitives ([Teller, 1994a]). This was,
for those representations, the most seamless way to add memory to the evolving programs.

However, when PADO moved to its current representation for evolving programs (NP),
the data-flow nature of that representation created another kind of natural memory for the
evolving programs. This memory source is the recurrent loop memory similar to memory use
in recurrent systems like recurrent neural networks. Indexed Memory can still be used with
evolving NP programs, but because it is largely redundant, indexed memory was dropped
as a memory source for PADO. Section 6.6 demonstrates that indexed memory can still be
used with the NP representation.

42 CHAPTER 3. THE PADO APPROACH

Guided Migration in PADO

Section 3.2 described how a C class classification problem is broken down in PADO to C
distinct discrimination problems. The previous sections of this chapter also described the

insight that:

If a program performs worse than random guessing in one discrimination pool,
it must necessarily perform better than random guessing in some other discrimi-

nation pool.

That insight, coupled with the empirical evidence that crossover and mutation often produce
programs not only worse than their parents, but worse than random guessing on the same
problem, lead to the process of discrimination pool guided migration. While this guided
migration clearly makes good use of otherwise wasted information, it improves the evo-
lutionary process in a complicated manner. In evolutionary computation the process of
exchanging some individuals between relatively distinct populations is often called niching
(after the term for the same phenomena in real flora and fauna), demes or the island model
(see [Collins, 1992] for details). The thesis instantiation of PADO does not have discrimina-
tion pool guided mutation; the discrimination pools are entirely separate for the entire run
of evolution.

Adding Noise to the Training Input Signals

PADO was designed to learn complex signal understanding problems even where there is
very little to learn from (e.g., only 10-20 labeled signals from each class to be discriminated
between). In much of the published work on PADO (e.g., [Teller and Veloso, 1997, Teller and
Veloso, 1995d, Teller and Veloso, 1995a]) noise was added to the training signals in an effort
to prevent (or at least forestall) overfitting to the training set. This addition was found to be
quite effective in most of the domains PADO has been applied to over the years. Despite this
overwhelming evidence that it improves performance, changing the training signals clouds
the issue of what PADO can learn from small training sets and so PADO does not include
any noise additions to the training signals.

Finally, there are as in any system, a number of parameters that must be set. Every
effort was made to set these parameters in PADO to reasonable values and to leave them
fixed for all the experiments described in this thesis. For completeness, Appendix C.2 has
an annotated version of these parameters.

Chapter 4

PADO Orchestration

This thesis introduces particular aspects of the process of automatically sub-dividing a prob-
lem, developing multiple solutions to each sub-problem, and then orchestrating the sub-
solutions into a complete solution. This chapter establishes through a series of experiments
that this divide and conquer strategy can be done automatically, that the five specific tech-
niques introduced for learning orchestration are effective, and that the orchestration of sub-
solutions is a rich, intriguing area for machine learning study.

Figure 4.1 revisits PADO's general orchestration strategy as described in the previous
chapter. In short, the lower level of orchestration pictured with the V weights takes a
collection of evolved programs, each of which is trained to perform the same discrimination
task, and orchestrates their responses on each particular signal to be'identified into a single,
aggregate response. How this aggregate response is obtained is the lower level orchestration
problem in PADO.

Signal Classification-

♦
FHfe * OutputQJiscrimination-Solution. *3

V <f W\ \ wi!T~ —I?ET~-- ■2s.

A I
I

Discrimination-Solution, Confidence BJ, \Vj *Output(Program.l\
j = l

Prog* Prog 2 ^OBJ Prog*. Prosf„ ^"«B-i Pr°BB

Signal

~ At this- layer, a set of discrimination-solution confidences
is taken and orchestrated.

This level of orchestration returns a classification, not
a confidence (as does the lower level orchestration).

At this layer, a set of B evolved programs is shown a signal.
Each program examines that signal and returns a confidence

that the signal comes from some class I.
Then these confidences are orchestrated and that

orchestration returns a discrimination-solution confidence
for class I.

Figure 4.1: The two tier general orchestration process in PADO.

The higher level orchestration problem pictured with the W weights is as follows. How
to combine these aggregate responses from each discrimination problem into a solution to

43

44 CHAPTER 4. PADO ORCHESTRATION

the larger classification problem into which the multiple discrimination problems have been
broken. In this higher level orchestration problem, the responses being orchestrated do not
come from programs (or orchestrated groups of programs) trained to perform the same task
(as in the lower level orchestration problem). Instead, the responses to be orchestrated at
this higher level, come from solutions to complementary problems.

For this chapter, we will concentrate on the higher level orchestration in PADO. To focus
in this way, we will make the simplifying assumption that exactly one program will be chosen
from each discrimination pool. This means that the lower level orchestration function FL

is a NOP. This simplification of PADO's orchestration for explanation purposes is shown in

Figure 4.2.

Signal Classification —-*■ F [jf* * OutputiSystem^^
c

i = l

Discrimination-solutionj Confidence

ProgJ

T
Signal

At this level a set of discrimination-solution confidences
is taken and orchestrated.

This level of orchestration returns a classification, not
a confidence level.

In this simplified PADO strategy only one program is chosen

for each discrimination-solution, so there is no

orchestration at this level.

Figure 4.2: PADO's simplified orchestration strategy

This brings us to the topic of this chapter: how to learn to orchestrate the best possible
team for classification. This chapter will address issues of which programs to orchestrate,
how to orchestrate them, and how to bias and improve orchestration through evolution itself.

4.1 Orchestration Techniques

To understand the domain and range of this orchestration work, it will help to start by
describing the orchestration options that we investigate in the course of this work. Most
briefly, these are:

• Fitness Proportionate Orchestration - the reasonable but fixed control against
which the learned orchestration paradigms are measured.

• Evolved Orchestration - implicit orchestration by evolution with a revised orchestration-
sensitive fitness function.

• Weight-Search Orchestration - orchestration by the learning of parameters.

• Program-Search Orchestration - orchestration by the selection of appropriate pro-
grams from the discrimination pools.

• Nearest-Neighbor Orchestration - orchestration by the creation of an appropriate
non-linear orchestration function.

4.1. ORCHESTRATION TECHNIQUES 45

The simplest option is to do no more than necessary. This fitness proportionate orches-
tration will be the baseline against which we will measure other techniques. In this fitness
proportionate orchestration, PADO picks the best program from each discrimination pool
and orchestrates them using a fixed function with fixed parameters (i.e., no learning). The
next simplest strategy is to maintain the fitness proportionate orchestration whie incorpo-
rating its particular demands into the fitness function. This is evolved orchestration.

As long as there are a number of "parameters" or "coefficients" in the fixed orchestration
function, another technique for improving orchestration could be to learn, for a particular
set of programs, which coefficient values optimize the group's coordination. This is learned
weight orchestration. Conversely, in learned program orchestration, with these coefficients
fixed, as in the fitness proportionate orchestration case, we can learn which programs (one
from each discrimination pool) would produce the best group for task coordination. It is
possible to learn, for a fixed program set with fixed parameters, what function would optimize
that particular group's coordination. This is learned function orchestration. The function
approximator used in this chapter is a nearest-neighbor space.

These are orthogonal tactics for improving orchestration behavior. Future work could
investigate combinations of these procedures in series or even in parallel (though this latter
case could be more complex for some procedure combinations).

4.1.1 Fitness Proportionate Orchestration

This section describes the fitness proportionate orchestration procedure against which learned
orchestration techniques will be measured and from which the learned orchestration tech-
niques will start.

The first step in fitness proportionate orchestration is to pick the best program from each
discrimination pool to be in the orchestrated set. Specifically, the procedure is to sort the
programs in each discrimination pool according to training set fitness and choose the top
ranked program from each discrimination pool. Remember, there is one discrimination pool
for each class and the programs assigned to this pool are evolved with the purpose of creating
a discrimination-solution for that class (i.e., solving the binary classification problem "Is this
from class i or not?").

This selected program set is orchestrated with a simple function using reasonable, fixed
coefficients (hereafter referred to as weights).

Each program p has a fitness, Gp (averaged over all training examples), that ranges
between 0.0 and 1.0. Let us give each program p selected as part of the final PADO classifier
an orchestration weight of Wp = Gp. For a particular test signal, each program is shown the
signal and returns a response Rp between Rmtn and Rmax. Let us refine Rp according to:

T>max Dmin

<ew := (Wp * Rp) - (1 - Wp) * 3 (4.1)

Now if the program p from class i has the highest1 Rp, PADO concludes the test signal
is from class i. However, because of Equation 4.1, PADO "listens more attentively" to

1I.e., Rp > Rpi for p' equal to all C — 1 other programs being orchestrated.

46 CHAPTER 4. PADO ORCHESTRATION

programs that are, on average, "more reliable" (i.e. have higher fitness). Notice that this
fitness proportionate orchestration makes no attempt to find:

• a fitness function that promotes orchestration

• the optimal weight Wp for each program

• the optimal programs to orchestrate

• the optimal function on which the weights act

4.1.2 Evolved Orchestration

Clearly, an alternative to learning how best to orchestrate a number of programs, or which
programs to orchestrate, is to try to change the basic learning of the programs so that the
programs that perform best on the training set will also be the best orchestrated without
further learning. Because PADO learns programs in an evolutionary framework, this amounts
to incorporating the demands of a particular orchestration strategy into the fitness function.

At each generation, after' computing the fitness of each evolving program, PADO can
assign each program a new fitness based on its ability to orchestrate with high fitness indi-
viduals from the other discrimination groups.

For each discrimination pool i, PADO creates J biased-random2 groups (using one pro-
gram from each of the other C—\ discrimination pools) called P[-.Pj. For each discrimination
group i, for each program p in the group:

G;ew = E/=iEt>q/({p}Ui*,WQ (42)

*J

Eval({p} U PLW) is the percentage of training examples that the orchestrated PADO
program set of {p} U P] correctly classifies, orchestrated with the weight set W (such that
Wp = Gp for each program p in {p} U P-). This value is an approximation to how well p
"orchestrates in general", relative to other programs in the same discrimination pool.

From this point on, PADO follows the fitness proportionate orchestration strategy except
that the program from each discrimination pool chosen for orchestration will be the best based
on G™w rather than old fitness. In evolved orchestration, Gpew replaces Gp in the entire
process. So the number of copies that program p is likely to have in the next generation
is a function of Gp

iew and therefore a function of how well p "orchestrates" with programs
from the other discrimination pools, p's fate is no longer a function of p's performance on
its assigned discrimination task.

4.1.3 Weight-Search Orchestration

Another variation on the fitness proportionate orchestration in PADO is to try to find the
best set of weights for the chosen set of programs to be orchestrated; this is weight-search

2 Picked randomly, biased toward higher fitness individuals according to the same schedule shown in
Figure 2.1. For this thesis, J was set to M/C.

4.1. ORCHESTRATION TECHNIQUES 47

orchestration. We get one degree of freedom for each program to be orchestrated by allowing
each element Wp of the weight set W to vary between 0 and 1 (instead of simply setting it
to Gp). There is a wealth of literature about parameter tuning and for this general situation
(parameter tuning for linear function), techniques such as linear regression (e.g., [Press et aL,
1992, Rice, 1987]) have been well studied. The following method for tuning the parameters
was chosen simply to parallel the method used in Section 4.1.4.

To begin, this strategy will create a set of programs Z to orchestrate. Z will be made of
the single best program from each discrimination pool based on training set fitness. Next,
the strategy will initialize the weight set W for orchestration such that Wp = Gp for each
program p selected for Z, just as in the fitness proportionate orchestration case. Now we
can search for a better set of values for W. After initialization, the following three steps of
a simple simulated annealing process are repeated Qi times.

Initialize: d = 1 and Wbest = W

1. Pick i between 1 and C.

2. Wi = Wi + 0* di

3. If Eval(Z,W) > Eval(Z,W6est), then Wbest = W eke d{ = -d{;

O is a Gaussian random number generator. Step 1 is performed by choosing i from the
range [1..C] with a probability distribution equal to the sampled success rates at step 3 on
previous selections of i in step 1. Step 3 is annealed so that local minima are partly avoided.
This annealing takes the form of selecting the inferior option with probability equal to %p-

(1 < t < Qi).

4.1.4 Program-Search Orchestration

Another variation on the fitness proportionate orchestration in PADO is to fix the weight set
W at their default values (Wp — Gp for each program p selected for orchestration) and to try
to find the set of programs that best fit those weights; this is program-search orchestration.
We get one degree of freedom per class (i.e. one per orchestration weight) by allowing the
program to orchestrate for discrimination-solution i to vary over all of the programs in
discrimination pool i. The rationale for picking some program other than the "best" program
(highest fitness measured on the training set) from a discrimination pool is the following.
Picking some other program may (or may. not) reduce the individual discriminatory power of
that one program discrimination-solution, but may decrease the non-linear relations in the
orchestration process by enough to produce a net classification performance improvement
for the entire PADO system.

To begin, this strategy will initialize the set Z to be the best program p from each
discrimination pool based on standard fitness (Gp). The orchestration weight set, W, will
be set for each program p to be orchestrated to its default value, Gp. Now we can search for
a better program set Z (Z = {pi, ..pc})- After initialization, the following three steps of a
simple simulated annealing process are repeated Q\ times.

48 CHAPTER 4. PADO ORCHESTRATION

Initialize: Zbest = Z

1. Pick i between 1 and C.

2. Exchange Zi3 for another program from the discrimination class i pool.

3. If Eval(Z,W0 > Evel(Zbest,W), then Zbest = Z

Step 1 is performed by choosing i from the range [1..C] with a probability distribution
equal to the sampled success rates at step 3 on previous selections of i in step 1. Step
2 is performed with a bias toward more highly fit programs using the schedule shown in
Figure 2.1. Step 3 is annealed so that local minima are partly avoided. This annealing take
the form of selecting the inferior option with probability equal to ^^ (1 < t < Qi).

4.1.5 Nearest-Neighbor Orchestration

The introduced weight-based orchestration schemes explored in the previous few sections are
linear orchestrations. An example will highlight the distinction between these and non-linear
orchestration strategies; the subject of this section.

Suppose that when the programs chosen to discriminate for classes i and j both return
high confidence, it is the case 93.2% of the time that the signal in question is really from
class k, and it is the case 99.1% of the time when, in addition, the class k program confidence
value is particularly low. In other words, there may be a set of signals from class k that are
not successfully recognized by the class k program discriminator, but these same confusing
characteristics cause a reliable pattern of responses in the other program discriminators.

In order to take advantage of these additional indicators4, PADO needs to employ a
function approximator that can capture non-linear relationships. Nearest-Neighbor is such
a function approximator and we will now describe how it can be incorporated as an orches-
tration strategy.

Let us assume, as we did in the fitness-proportionate orchestration and in the weight-
search orchestration, that we will simply choose one program from each discrimination pool
and that that program will be the single best program for that generation (as measured on
the training set).

For a C class classification problem, we will create a C-dimensional nearest-neighbor
space called St. Now PADO fills this space with labeled points. For each labeled training
input Si, PADO knows how each of these programs to be orchestrated responded. If we
call the label (correct class) for this training example Li and we call these C responses
from these C programs R1

St through Rg., then we can set the point in C-dimensional space
Af[Rg.,...,Rs] to have the value Li. After doing this for all the available training inputs
(1 < i < \S\), we have a picture of how this group of programs interacts over a sampling of
inputs. The process of building this nearest-neighbor space is outlined in Table 4.1.

3Changing Zi from p to p' changes Wi from Gv to Gv>.
4The non-linear relations between program responses that were missed by the other orchestration methods

described in this chapter.

4.1. ORCHESTRATION TECHNIQUES 49

For each labeled training input Si with class label Lj
For all of the programs to orchestrate (1 < p < C)

Let Rp be the response of program p to training input 5,-
AT[RS , ■•., Rp

s,..., Rs] = Li

Table 4.1: The process of building the nearest-neighbor space for orchestration.

Extracting the answer (label) from a nearest-neighbor space is a well studied process and
PADO uses, rather than adds to, this field. Therefore, those readers familiar with the use of
nearest-neighbor spaces can now safely skip on to Section 4.1.6.

Extracting the Answer from Nearest-Neighbor Space

Now that PADO has this structure, M, a process of choosing a class on an unlabeled test
input must be described. On test input E{, the set of programs will have a set of responses
that corresponds to the point [RE.,..., RE., ...,R%] in the nearest-neighbor space. For real-
world problems, the chances are very low that this point in the space will already have a label.
This means that PADO must look to nearby points to determine a likely class. There are
many such k-nearest-neighbor strategies. One of the simplest, and the one PADO uses is to
give every labeled point a vote, but to weight that vote by 1/r2 where r is the distance in C-
dimensional space between the labeled point in question and the point [REi, ■■-, REi,..., REi]-

There are two important issues surrounding how to maximize the efficiency of prediction
for a nearest-neighbor space that relate to normalization of the dimensions. Essentially, the
first problem is if the program discriminator for class p always says, for example, either 101
or 107, but is always right5, it would be nice to count this dimension in the NN space as more
important than some other dimension / in which the program always says either 101 or 107
but those responses only have a 0.75 correlation with the correct discrimination confidences.
PADO solves this problem by weighting each dimension's value by Gp, the fitness of that
dimension's representative program.

The second issue is that if there is a discriminator program for class i that always responds
with either 101 or 107 with 0.75 correlation to the correct discrimination confidence, and there
is another program for class / that responds with either 0 or 250 with the same correlation
to the correct discrimination confidences, we would like to weight those NN dimensions
equally since they convey the same amount of statistical information. However, because
we are measuring distances, the program for class / will have a larger effect on the class
chosen than will the program for class i. The solution in this case is to determine VARp,
the variance of the Rp

s. over all i, for p between 1 and C. Then each dimension p can be
weighted by 1/VARp. This normalization is always the right thing to do when the dimensions
are independent. Even though the programs never explicitly interact and are working on
different discrimination problems, because they are responding to the same set of inputs

5That is, there is a perfect correlation between the program's response value and the correct discrimination
confidence.

50 CHAPTER 4. PADO ORCHESTRATION

their responses will not be independent. Empirically however, this normalization is quite
close to the sort of normalization determined by more complex methods such as PCA.

Table 4.2 shows a nearest-neighbor based algorithm for choosing a class label for an
unlabeled test signal.

For each program p to orchestrate (1 < p < C)
Let RP

E be the response of program p to test input E

Let 8E be the point [RE,...,RE,...,RE] in C-dimensional space

For each labeled training input Si with class label Li
Let 5Si be the point [Rl

Si, ...,Rg.] in C-dimensional space
Let D be the weighted, normalized squared, Cartesian distance between §E and Ss,

For each program p to orchestrate (1 < p < C)

D = D + (RE-Rsf,v^-p

Tabulate a vote for label Li with strength equal to ^

Select the label that received the highest vote strength

Table 4.2: The process of using the nearest-neighbor orchestration for PADO classification.

The process shown in Table 4.2 simply works as follows. When a particular set of pro-
grams return confidences about some particular testing signal, the distance is measured in
the C-dimensional nearest-neighbor space (J\) between that point and every labeled training
point. This distance is weighted along each dimension by the fitness of the program responsi-
ble for that dimension and normalized by the variance of the training signal responses along
that dimension to remove one source of "noise" from the function. Each labeled training
point in the NN space votes for its label (class) with a vote strength of j^. The label (class)
that receives the largest total vote strength is chosen as the signal class to predict.

4.1.6 Other Orchestration Techniques

Example Combination Strategies

It is possible to combine orchestration variations like the ones described above in a variety
of ways. For example, we can first search through program space with a set of fixed weights
(Section 4.1.4), and once we find this cooperative set of programs we can then search through
weight space (Section 4.1.3) for this discovered set of programs in order to find the optimal
weight set for those programs.

Another combination possibility is to evolve better orchestration (Section 4.1.2) and then
at orchestration time, to do a search to find the best program set (Section 4.1.4).

4.2. EXPERIMENTAL COMPARISONS 51

Many combination strategies can be interleaved rather than done in series. It is easy to
imagine, for example, interleaving search in program space and weight space.

One more tangential use of the orchestration information that is worth mentioning is
the idea of Orchestration Based Elitism. In normal elitism in evolutionary computation, the
"best" one or few individuals in the population are guaranteed to survive unchanged into
the next generation. Typically the "best" individuals are defined by their fitness values. In
Orchestration Based Elitism, the "best" individuals, for elitism purposes, could be treated
to be those programs that won whatever orchestration strategy was currently in use. If what
the system really cares about is getting the best orchestrated group, then perhaps it is those
programs that win the orchestration search that should most certainly be preserved. Since
PADO does not use elitism, this comparison would be extraneous here but is certainly worth
pursuing in future work.

Mixture of Experts

Past work certainly exists on combining multiple models learned for the same purpose so
that their combined response is, on average, better than that of any one of the models
(e.g., [Littlestone, 1988, Littlestone and Warmuth, 1994, Blum, 1995, Bielak, 1993a]).

There are two main levels of orchestration in PADO. At the lower level (JFL), multiple
programs can be chosen from a single discrimination pool and their responses orchestrated
to obtain a single response for that discrimination-solution. Previous work in PADO (e.g.,
[Teller and Veloso, 1997]) has demonstrated that this level of orchestration can be effective.
In addition, the fact that evolution is used as the learning force in PADO provides a ready
source of programs that orchestrate at this level. However, both because PADO can function
when a single program is selected from each discrimination pool, and because finding the
right mixture of experts is not the primary work of this thesis, this aspect of PADO was
dropped from the thesis instantiation of PADO as described in the previous chapter. Future
work in this area should certainly include the incorporation of. other work on mixtures of
experts into this lower level PADO orchestration.

The second level of PADO (FJJ) orchestrates the different discrimination-solutions (inde-
pendent of how many evolved programs make up each of those discrimination-solutions). At
this level, much of the work on combining the responses of multiple experts is not applicable
because these discrimination-solutions are not responding to the same question. This is more
a situation of divide and conquer, in which this second level of orchestration is the conquer
step after the divided sub-problems have been solved. PADO does address this problem and
orchestration at this level is the subject of this chapter.

4.2 Experimental Comparisons

4.2.1 Example Domain

This thesis devotes an entire chapter (Chapter 7) to demonstrating the range and domain
of PADO. There are also a number of issues in this thesis for which empirical comparisons
are useful. For these comparisons, a manufactured domain presented in this section is used

52 CHAPTER 4. PADO ORCHESTRATION

throughout the rest of this thesis. This section presents that domain here because the first
experiment using this domain takes place in Section 4.2.2.

Before we present the domain, let us examine the criteria for a good domain in which to
test many of the claims of this thesis. This domain should be:

• A domain in which a near perfect solution can often be reached within the generation
bound.

• A domain in which a near perfect solution cannot be reached without a reasonable
amount of learning.

• A domain in which a near perfect solution is impossible without reference to multiple,
local signal aspects. In other words, it should be impossible to entirely solve the
problem by the global applications of the user provided parameterized signal primitives
(or by any single local application of the same).

• A domain in which there is sufficient complexity to highlight many of the distinctions
the thesis will bring up.

• A domain that is simple enough that we can have high confidence that it is entirely
understood. This is important because in real world domains, it is nearly impossible
to account for all empirical data oddities that are caused by unexpected characteristics
of the domain itself.

The manufactured domain this thesis uses has four classes. An example signal from each
of the four classes, from both the training and testing sets is shown in Figure 4.3.

As you can see in Figure 4.3, the distinguishing signal feature in this domain is slope. A
high level correct classifier of the four classes is:

Class 1 has a positive slope all the way through. Class 2 has negative slope
for the first half of the signal and then a positive slope for the second half. Class
3 has a negative slope all the way through. Class 4 has a positive slope followed
by a negative slope.

Each signal is a vector of 256 values, each of which is an integer between 0 and 255.
These are the sources of noise in this domain:

• The slopes vary uniformly within the ranges [-0.156,-0.078] and [0.078,0.156]

• The midline of the signal (mean of all signal values) before noise is added, varies
uniformly within the range [75,190]

• Each point of the signal varies uniform randomly from the "correct" line (defined by
the midline height and the chosen slopes) by an offset in the range [-25,25]

4.2. EXPERIMENTAL COMPARISONS 53

SAMPLE
Class 1

0

TRAINING
Class 2

'%|f|V##

SIGNALS
Class 3 Class 4

lift Ik |l 0toßW^

SAMPLE
Class 1

4

TESTING
Class 2

:*UWMd^

SIGNALS
Class 3

W%Wta

200 2SQ 0 «

Class 4

(#Wf

Figure 4.3: Example testing and training signals from the example domain.

The difficulty of the domain is, of course, largely dependent on the PSPs given to the
evolving programs. Imagine a PSP called SLOPE(x,y) such that SLOPE(x,y) returned the
average slope of the signal segment beginning with Signal[x] and ending with Signal[yj. Such
a PSP would obviously be very useful. With such a function at its disposal, figuring out if
a signal was from class 3 could be as simple as: OUTPUT «- ((SLOPE(0,128) > 0)
and (SLOPE(128,256) < 0)).

In order to make the problem a little more difficult, SLOPE(x, y) will not be provided
as a PSP. The two PSPs provided to PADO for this particular domain are:

PSP-POINT(x) this function takes a point on the signal and returns the value/height of
the signal at that point.

PSP-AVERAGE(x,y) this function takes a region on the signal and returns the average
value/height of the signal in that region.

Notice that estimating the slope using PSP-POINT(x) will take many function calls
given the amount of noise in the system. Estimating the slope for half the signal using
PSP-AVER AGE (x,y) can take as few as two PSP-AVERAGE function calls, but these must
be carefully chosen. If PSP-AVERAGE(x,y) is applied to more than about 1/4 of the signal,
it becomes useless for this domain.

Unless otherwise specified, all experiments described with this signal used a training set
size of 200 signals and a testing set size of 500 signals. Because signals from this domain
can easily be generated, these sets are generated randomly for each run to further smooth

54 CHAPTER 4. PADO ORCHESTRATION

out the effects of randomly choosing an abnormal sample for either the training or testing
set. This domain will be referred to, for the remainder of this thesis, as the Generic Signal

Domain.

4.2.2 Experiments with Orchestration

The experiment discussed in this section is the four class classification problem, the Generic
Signal Domain.6

The two important experimental questions to ask are "Do any of these learned orches-
tration strategies perform more efficiently than the fitness proportionate orchestration strat-
egy?" and "Do any of these learned orchestration strategies perform more effectively than
the fitness proportionate orchestration strategy?" For this thesis, these two terms will be

understood to mean:

efficiency the mean time (usually measured in generations) it takes the strategy to reach
a particular level of generalization performance.

effectiveness the mean level of generalization performance reached by a particular time
threshold (usually MAX-GENERATIONS).

In Figure 4.4, we can see that there is indeed something to be gained by learning a
better orchestration. The weight-search orchestration performs approximately 10% more
efficiently than the fitness proportionate orchestration and the program-search orchestration
performs approximately 20% more efficiently than the fitness proportionate orchestration.
These results make sense as there is only so much additional information that can be gained
within the context of this linear orchestration.

NP evolution in PADO in the Generic Signal Domain

0.95

o
O 0.9

1 0.85

CD c
CD
DJ

0>
co

0.8

£ 0.75

0.7

0-9-

.. * Evolved (Fitness Proportionate) Orch ■■«■ -
/ 0,-0 Fitness Proportionate Orch --t—

x n(/ ..«■" Weight-Search Orch -B—
• •° Program-Search Orch -x-

>i tf / $,■' Nearest-Neighbor Orch &

10 15 20
Generations

25 30 35 40

Figure 4.4: Comparison of the efficiency of four different orchestration techniques.

6This section explores differences in PADO orchestration using the NP representation and the Internal
Reinforcement procedures. These are described in detail in later chapters and the results of this section are
almost entirely independent of whether IRNP is on or off.

4.2. EXPERIMENTAL COMPARISONS 55

The nearest-neighbor orchestration, however, learns twice as efficiently as the fitness pro-
portionate orchestration, making it clear that there are often non-linear interactions between
these discrimination-solution responses that do convey additional information. It is worth
noting that all of these orchestration options incur a negligible computational cost relative
to the cost of evolving multiple discrimination-solutions.

The evolved orchestration is actually less efficient than doing no learning. This is such
an important (and oddly positive) result that an explanation will be saved for Section 4.2.3.

In Figure 4.5, we can see that orchestration affects not only how quickly PADO can learn
to generalize to a certain performance level, but that it also affects the generalization perfor-
mance that PADO achieves in the end. The fitness proportionate orchestration is the control
for this study and therefore the standard against which the other methods are to be com-
pared. In this particular domain, the weight-search orchestration reduces the generalization
error by about 10% by generation 40. Similarly, the program-search orchestration reduces
the generalization error by about 20%. Again, because these two strategies are forced to
explore within the context of the function "weighted voting," there is only so much they can
do to improve upon the fitness proportionate orchestration.

o o

CD
c
(D
O)
to
CO

NP evolution in PADO in the Generic Signal Domain

Evolved (Fitness Proportionate) Orch ••«••■
Fitness Proportionate Orch

Weight-Search Orch -B-
Program-Search Orch -x-

Nearest-Neighbor Orch &

15 20 25
Generations

30 35 40

Figure 4.5: Comparison of the effectiveness of four different orchestration techniques.

For this problem, the nearest-neighbor orchestration reduces the generalization error by
almost a factor of 3 (which in this case is a reduction of about 3% of the error).

The evolved orchestration is actually less effective than doing no learning. This is caused
by the same effect alluded to above and will be explained in full in Section 4.2.3.

The practical conclusion of this section is that the nearest-neighbor orchestration is the
best of the options put forward by this chapter. As will become clear later in the thesis, the
orchestration strategy used can have an effect on other aspects of PADO other than just the
effectiveness and efficiency. For that reason the rest of this thesis will report results using
both the nearest-neighbor orchestration and the weight-search function7

7Because they're fairly close in performance, weight-search orchestration was chosen over program-search
orchestration simply because it can be computed slightly faster.

56 CHAPTER 4. PADO ORCHESTRATION

4.2.3 Discussion

Evolved Orchestration, as it was defined in Section 4.1.2, adjusted the fitness values of
the programs in the population to reflect their ability to "generally orchestrate," and then
it applied the fitness proportionate orchestration with those new fitness values. Keep in
mind that while this adjustment of fitness value affects the course of evolution, it does not
immediately change anything but the relative fitness values of the programs.

Evolved Orchestration could just as well have been defined such that after the fitness
adjustment, any of the other learning based orchestration strategies could have been used.
Before the explanation for how this fitness adjustment hurts PADO's performance (and
why), Figure 4.6 shows all four of the orchestration strategies and their evolved orchestration
counterparts. Notice that in all four cases, the evolved orchestration fitness adjustment hurts
PADO's performance.

o

NP evolution using IRNP and Fitness Proportionate Orchestration ^

0.9

0.8

0.7

0.6

0.5

0.4

Fitness Proportionate Orch
Fitness Proportionate AND Evolved Orch

0 5 10 15 20 25 30 35 40
Generations

NP evolution using IRNP and Prog-Search orchestration

0.4

Prog-Search Orch
Prog-Search AND Evolved Orch

0 5 10 15 20 25 30 35 40
Generations

T3
fc
O
O

NP evolution using IRNP and Weight-Search orchestration

Weight-Search orchestraiton
Weight-Search AND Evolved Orch

10 15 20 25 30 35 40
Generations

0 5

NP evolution using IRNP and Nearest Neighbor orchestration

0.75

Nearest Neighbor Orch
Nearest Neighbor AND Evolved Orch

10 15 20 25 30 35
Generations

40

Figure 4.6: Comparison of the effectiveness of four different orchestration techniques with and
without evolved orchestration.

Here is an explanation for why putting the orchestration directly into the fitness function
actually hurts PADO's performance. PADO begins by sub-dividing its population, and
thereby the problem, into several easier sub-problems. This subproblem division is reasonable
for classification and PADO enforces it throughout the entire run. The chapter has shown
that the orchestration phase of PADO is not trivial, but because it is tractable, there is more
to be lost than gained by removing the useful constraint on the algorithm discovery phase
of PADO: only solve a particular discrimination problem.

When fitness gets tied to orchestration instead of discrimination, PADO loses exactly
these constraints and ends up searching a much larger space. So we argue that PADO may

4.2. EXPERIMENTAL COMPARISONS 57

have gained something through evolved orchestration, but at the cost of losing the whole
mechanism of divide and conquer that made orchestration important in the first place.

The major characteristics of the curves in Figure 4.5 are that the evolved orchestration
does worse than the fitness proportionate orchestration, the Weight-Search and Program-
Search orchestration methods do only mildly better than the fitness proportionate orches-
tration, and the Nearest-Neighbor orchestration method is markedly more effective and
markedly more efficient. None of these effects seem to be empirically specific to this do-
main. The same effects, with similar magnitudes, have been observed in two other different
domains. This section has already addressed why the evolved orchestration is less successful
than any orchestration method that does not include it. The other two major characteristics
just mentioned also deserve discussion.

The reason that the Weight-Search and Program-Search orchestration methods are only
mildly better than the fitness proportionate orchestration is that the fitness proportionate
orchestration is a very good strategy, given the constraints of a "weighted max vote" orches-
tration paradigm. As has been noted, since this orchestration paradigm is linear, the default
weights (a direct function of the fitnesses of the programs chosen) are quite often exactly
the right weights to have. So in reality, about 10% of the runs evolve programs that can be
orchestrated noticeably better with the Weight-Search or Program-Search strategies. But
since each point in the curves in Figure 4.5 is an average over many runs, and since these
two strategies were of negligible value in about 90% of those runs, the curves express this as
a mild average performance improvement.

The explanation for the success of the Nearest-Neighbor strategy is exactly the opposite.
The Nearest-Neighbor orchestration strategy discards the linear orchestration assumption
and in so doing takes advantage of the non-linear relationships between the program re-
sponses on particular signal inputs. As will be addressed in Chapter 7, the advantages of the
Nearest-Neighbor strategy are diminished in domains where there is very little training data.
This is so because the Nearest-Neighbor orchestration strategy needs to fill its space with
labeled training points and when there are few training points to use, the nearest-neighbor
space has low density and thus less non-linear information of which to take advantage.

Chapter 5

Neural Programming

5.1 Introduction

Genetic programming is a successful machine learning technique that provides powerful pa-
rameterized primitive constructs and uses evolution as its search mechanism. However,
unlike some machine learning techniques such as Artificial Neural Networks (ANNs), GP
does not have a principled procedure for changing parts of a learned structure based on
that structure's past performance. GP is missing a clear, locally optimal update procedure,
the equivalent of gradient-descent backpropagation for ANNs. In this chapter, we introduce
"Neural Programming," a connectionist representation for evolving parameterized programs.
Neural Programming allows for the generation of credit and blame assignment in the process
of learning programs. We further introduce "Internal Reinforcement" as a general informed
feedback mechanism for Neural Programming. We present the Internal Reinforcement pro-
cess and demonstrate its increased learning rate through empirical results.

This chapter introduces a new machine learning representation for complex programs.
This new representation, Neural Programming (NP), has been developed with the goal of
incorporating a principled updating procedure into genetic programming (GP). Neural Pro-
gramming is a connectionist programming language that has been designed to make internal
reinforcement, until now unaccomplished in genetic programming, possible.

Genetic programming is a successful representative of the machine learning practice of
empirical credit-blame assignment [Angeline, 1993]. Empirical credit-blame assignment al-
lows the dynamics of the system to implicitly determine credit and blame. Evolution does
just this [Altenberg, 1994]. Machine learning also has successful representatives (e.g., ANNs)
of the practice of explicit credit-blame assignment. In explicit credit-blame assignment ma-
chine learning techniques, the models to be learned are constructed so that why a particular
model is imperfect, what part of that model needs to be changed, and how to change the
model can all be described analytically with at least locally optimal (i.e., greedy) results.
The goal of this work is to bridge this credit-blame assignment gap by finding ways in which
explicit and empirical credit-blame assignment can find mutual benefit in a single machine
learning technique.

Why adapt GP instead of simply using a machine learning technique like ANNs? In
general, it is not possible to give an ANN an input for every possible parameterization of

59

60 CHAPTER 5. NEURAL PROGRAMMING

each user denned primitive function that a GP program can be given. And how to work
complex functions into the middle of an otherwise homogeneous network of simple non-linear
functions is far from obvious. Yet gradient-descent learning procedures like backpropagation
in ANNs are an extremely powerful idea. Backpropagation is not only a kind of performance
guarantee, it is a kind of performance explanation. It is to achieve this kind of dual benefit
that the research this chapter reports on was undertaken.

This chapter shows how to accumulate explicit credit-blame assignment information in
the Neural Programming representation. These values are collectively referred to as the
Credit-Blame map. By organizing the GP programs into a network of heterogeneous nodes
and replacing program flow of control with flow of data, we can use the Credit-Blame map
to propagate punishment and reward through each evolving program.

The goal of this internal reinforcement is to provide ä reasoned method to guide search
in the field of program induction. When hill-climbing in any space, it is always possible to
sample a few points and then choose the best of those to continue from. When the gradient
is available, however, it is always better (locally at least) to move in the direction of the
gradient. Program evolution can work with random samplings of nearby point in program
space, but it can work much more effectively with internal reinforcement. We introduce
internal reinforcement as a program evolution approximation to the program space gradient
function. As will become clear in the following chapter, internal reinforcement is a partial,
not complete solution to this problem.

In short, in GP, it would be desirable to be able to have reinforcement of programs be more
specific (directed towards particular parts or aspects of a program) and more appropriate
(telling the system how to change those specific parts).

This chapter contributes the Neural Programming representation as a new, connectionist
representation for evolving programs. In Chapter 6, we describe how this representation can
be used to deliver explicit, useful, internal reinforcement to the evolving programs to help
guide the learning search process. And in Chapter 7, we demonstrate the effectiveness of
both the representation and its associated internal reinforcement strategy through several
experiments on illustrative signal classification problems.

5.2 The NP Representation

The essence of a programming language is one or more basic constructs and one or more
legal ways of combining those constructs. A measure of the extensibility of a language is the
ease with which new constructs or new construct combinations can be incorporated into the
language. It is the high degree of extensibility in GP that we want to wed to the focused
update policies possible in other machine learning techniques.

The Neural Programming representation consists of a graph of nodes and arcs that per-
form a flow of data, rather than the flow of control as in typical programming languages.
The nodes in a neural program can compute arbitrary functions of the inputs. So a node can
still be the sum of inputs to the node and a sigmoid threshold. But it can also use other func-
tions such as MULT, READ, WRITE, IF-THEN-ELSE, and most importantly, potentially
complex user defined functions for examining the input data. Examples of neural programs

5.2. THE NP REPRESENTATION 61

are given later in this chapter. Table 5.1 enumerates the important characteristics of the NP
representation.

• An NP program is a general graph of nodes and arcs.

• Each NP node executes one of a set of functions (e.g., Read-Memory, Write-
Memory, Multiply, Parameterized-Signal-Primitive-3, etc.) or zero-arity func-
tions (e.g., constants, Clock, etc.).

• An arc from node x to node y (notated (x,y)) indicates that the output of x
flows to y as an available input.

• On each time step t (0 < t < T), every node takes some of its inputs
according to the arity of its function, computes that function, and outputs
that value on all of its output arcs. Data flow, not control flow.

• One type of node function is "Output." Output nodes collect their inputs
and create the program response through a function OUT of those values. In
this thesis OUT is a simple weighted average. Each value is weighted by the
timestep it appears on.0

"More detail on this can be found in Appendix C.3.2.

Table 5.1: The critical characteristics of the NP representation.

Throughout this thesis, the characteristics of NP will be used and discussed in greater
detail. Let us here highlight a few aspects of NP. A parameterized signal primitive (PSP) is
a piece of code written by a user of PADO that expresses a way of extracting information
of the input signal in a parameterized form. Example PSPs might return the AVERAGE
or VARIANCE of values in a range of the input data as specified by the inputs to that
node. This kind of embedding of complex (often co-evolved) components as primitives in
the evolving GP system has repeatedly been shown to be effective (e.g., [Koza, 1994]).
Furthermore, these powerful parameterized-signal-primitives, as part of the learning process,
can be used in place of brittle preprocessing. As has been discussed already, the salient
distinction here is the parameterization of input "features."

The topology of NP programs is not rigidly fixed to the semantics of the function each
node happens to execute. This means that, for example, a node that only "needs" two inputs
(e.g., a node executing the function DIVIDE) may have more input arcs than it can use (e.g.,
it has four input arcs and simply ignores two of them) or have fewer than it can use (e.g., it
has only one input and so returns some default value).1

Each NP node may have many output arcs. (See Figure 5.2 for a simple example.) The
multiple forked distribution of good values from any point in the program is a valuable aspect

1 Implementation detail: the arcs are numbered in increasing chronological order of their connection to
the node and the input parameters of a function simply grab arcs to treat as inputs starting with the earliest
connected arc.

62 CHAPTER 5. NEURAL PROGRAMMING

of the XI' representation. Seen from a GP vantage, this is similar to a kind of highly flexible
auWMn.itic.illy defined functions (ADF) [Koza, 1994] mechanism. The idea is that once a
"viilu.iMe" |)iei r of information has been created, it can be sent to different parts of the NP
pro-ji.iiii t<. l.e used further in a variety of different ways. GP program representations can
prolH l>\ in' (Mporating this fan-out which is an advantage of connectionist representations.

In .. il.it,i How machine in which function evaluation at the nodes is instantaneous, there
an- two «I i — i i 11 € -1 options for computing the output of a node from its inputs. The first is that
.ill no-le- ,II t simultaneously on the outputs generated on the previous timestep. In other
U.MCI-. tlien- iv no order to the evaluations of nodes in a program: they evaluate in parallel.
In t In- SITOIKI « use. the nodes are evaluated in a particular order, so that if DX}t indicates the
ev.tin.it ion of node .r on timestep t. the evaluation order is A),o, ^1,0, •••, Avp,o, Do,i, Diti,
... I>\ 1 \\ here A',, is the number of nodes in the hypothetical program p. For illustrative
piirpoM-s. in tin- examples below we assume that the NP programs are evaluated according
to tin- ln-t rule: all nodes evaluate in parallel. In point of fact, PADO is implemented with
tin- -.eroinl variety of data flow.

(;i\en t hat t here is a timestep threshold imposed on the evolving programs, a reasonable
<|in->iion to ask is, "How much of a burden is this threshold?" or alternately "Can the
evoh■inu. programs take advantage of additional time in which to examine an input signal?"
The ausweis to these questions are provided in Section 7.5.

I here are two dominant forms of change that evolving programs typically undergo:
crossover and mutation. Mutation is the change of one (usually atomic) part of the program
to another aspect of the same type. Crossover is the sexual reproduction of two programs
where two programs "mate" by exchanging program material between them.

While NP programs look more like recurrent ANNs than traditional tree-
structured GP programs, NP programs are changed not by adjusting arc weights
(NP arcs have no weights), but by changing both what is inside each node as well
as the topology and size of the program.

5.3 Illustrative Examples

NP programs are evolved and explanations using evolved examples are not practical because
the evolved examples are not concise. Instead we illustrate the NP representation through a
set of constructed examples. Of course, any of the following example programs and program
fragments could have been the result of evolution.

5.3.1 Example 1: The Fibonacci Series

Figure 5.1 shows an extremely simple NP program. This program computes the Fibonacci
series and sends each successive element out of the program fragment on Arc4.

There is only one initialization necessary for the correct operation of NP programs: "what
input values should all nodes use on their very first computation?" Since NP programs are
data flow machines, each arc is a potential input value and so there must be some initial
state to the program. For this example, let us initialize each program so that all arcs have

5.3. ILLUSTRATIVE EXAMPLES 63

hArc4

Arc5

Figure 5.1: A simple NP program that computes the successive elements of the Fibonacci series.
All input/arc values are 1 on the first time step.

the value 1 when a program starts up. Table 5.2 shows how the values of the arcs change
over time.

Step Arc 1 Arc 2 Arc 3 Arc 4 Arc 5
0 1 1 1 1 1
1 1 1 2 2 2
2 1 2 3 3 3
3 1 3 5 5 5
4 1 5 8 8 8

Table 5.2: Progression of arc values over time for the simple NP program shown in Figure 5.1.

5.3.2 Example 2: The Golden Mean

Let us now change slightly the computation of the simple NP program from example 1.
Instead of outputing a list of exponentially increasing values (as in the program shown in
Figure 5.1) let us design an NP program that approximates the "Golden Mean"2 through
its output node. To do this, all we need to do is to add an extra node that does Division
(DIV) and pass it as its two parameters (i.e., its two input arcs) fib(i) and üb(i — 1) as they
are computed (shown in Figure 5.2).

Table 5.3 shows how this computation plays out through the arcs as the timesteps pass.

5.3.3 Example 3: Foveation

Foveation is the process that changes focus of attention in response to previous perceptions.
For example, this iterative process of foveation is what gives us the illusion of seeing with
high-resolution across our field of vision when, in fact, our fovea (the high resolution area of
the retina) only fills about 5% of our field of view.

2The golden mean is ljy 5. This example program approximates x ^ 5. Note that lim„.
i±VE

fib(i)
fib(i-i)

64 CHAPTER 5. NEURAL PROGRAMMING

Arc6

Figure 5.2: A simple Neural Program that iteratively improves an approximation to the golden
mean. This program assumes that all input values are 1 on the first time step.

Step Arc 1 Arc 2 Arc 3 Arc 4 Arc 5 Arc 6 Arc 7 OUTPUT Golden Mean

0 1 1 1 1 1 1 1 NA 1.618034

1 1 1 1 2 2 2 1 1 1.618034
2 1 2 2 3 3 3 2.0 1.5 1.618034
3 1 3 3 5 5 5 1.5 1.5 1.618034
4 1 5 5 8 8 8 1.6667 1.5417 1.618034
5 1 8 8 13 13 13 1.6000 1.5533 1.618034

Table 5.3: Progression of arc values over time for the simple NP program shown in Figure 5.2.

The Fibonacci examples illustrate how the flow of data works and how the fan-out of
values can significantly reduce the size of a solution expression. In this example, we illuminate
another important feature of NP programs: the ability to foveate. NP programs have the
ability to use the results of an examination of the input signal to guide the next part of that
examination.

NP programs view their inputs (called signals when appropriate to avoid con-
fusion with "inputs" to a node) through Parameterized Signal Primitives (PSP),
variable argument functions defined by the NP user.

Let us assume that this NP program is examining signals that are video images. PSP-
Variance is a user-defined PSP that takes four arguments, a0 through a3, (interpreted as the
rectangular region with upper-left corner (ao,«i) and lower-right corner (a2,a3)) as input
and returns the variance of the pixel intensity in that region. Figure 5.3 shows what could
be part of a larger NP program. The node indicated with a double circle computes the
function PSP-Variance.

To simplify the explanation, this particular NP program fragment delivers static values
for three of those four inputs. The fourth input, indicated by a dashed circle, changes as the
program proceeds. This means that PSP-Variance, at each time step, computes its function

5.3. ILLUSTRATIVE EXAMPLES 65

Figure 5.3: A simple NP program fragment. The output value from the dashed circle node is
being iteratively refined to minimize the value returned by the PSP-Variance node.

over the region (50,17,104,a3). The simplest way to explain this mechanism is to give the
pseudo-code to which it is equivalent (see Table 5.4). Note that IF-T-E (If-Then-Else) is
the function "if (a0 < &i) then return a2 else return a3." Assuming again that all arcs are
initialized to 1, this program finds a one-sided local minimum of PSP-Variance with respect
to its fourth parameter. In general, the program fragment increments the fourth parameter
only if (PSP-Variance(50,17,104,a3!i) < PSP-Variance(50,17,104,a3)i_i)) (where a3ji is a3 on
timestep t). This is a concise example of NP foveating: using the values it perceives to focus
upon further investigation of the input in question.

VARo = l
VAR, = PSP-Variance(50,17,104,a3)i)
IF (VAPM_I < VARt)

THEN a3i<+1 = az,t

ELSE a3,t+i = a>3,t + 1

Table 5.4: Pseudo-code for the behavior of the NP program fragment in Figure 5.3. In this figure,
VARj denotes the value of VAR at time t, and a3>t denotes the value of argument a3 at time t.

66 CHAPTERS. NEURAL PROGRAMMING

5.4 Evolving Subroutines

Kadi IKM|.- niiiy have multiple outputs. Since one of the advantages of substructure to
e\ol\ iiiu |n.»i;iams is the availability of regularity [Koza, 1994], this opportunity to spread
ei »in | »Mt.-. I \. 11 in- to multiple locations simultaneously is an alternative to explicit subroutines
in r\n|\ iii'j pio'jiams.

II.•!.• is .mother way to understand the value of this kind of programmatic fan-out. In
l»in|ii'j\. tli'- process of branch duplication takes place in which a gene (or at least a region
of |).\.\i i- duplicated within a chromosome. This redundancy is almost never harmful
IMV.HIM- th.se rruions of DNA encode for proteins, and encoding for them more than once
does M,,i ir.lii.r the abundance of these proteins. Now, however, biological mutation has
the o|i|M.!tiinity to change one of these regions encoding for a new, "experimental" protein
wit hoiit disrupting the supply of the original, useful protein. In the same way, if there is a
l>arti. ulath »o««I "idea" present in an NP program, this "idea" (i.e., series of output values
from a no.lri can be distributed, through the multiple output arcs, to a number of different

parts of t he program.

I in 111« i. an additional output arc can be added to a node that has been identified as the
source of one of these "good ideas." This node can lead into an unused or under-used part
of the program. This area of the program now has the opportunity to create some added
value iisin» this input. If it does, learning has succeeded; the performance has improved. If
it does not succeed, then no harm has been done to the program because the "good idea"
is still heilig used correctly in other parts of the program. Notice that this "parallelization"
of evolution (i.e., independence of sub-parts of the program) is accomplished because NP
programs are data-flow rather than control-flow programs and because there can be multiple
OUTPUT nodes in a single NP program.

Our work as reported in this thesis contributes a specific technique to identify these
"good ideas" (Section 6.2.1). Section 6.3 makes explicit how unused or under-used areas of a
program can be identified and exactly how the "good idea" node and the unused/under-used
program areas can be connected. For completeness, however, it is worth mentioning at least
one method for adding explicit hierarchy into the NP paradigm. The only insight required
is that each node computes a function and that that function can be co-evolved. Figure 5.4
below pictures this embedding process.The general process of co-evolution of subroutines is
dealt with in detail in a number places (notably [Koza, 1994]). These same pieces of wisdom
are equally applicable to evolving hierarchy within a single NP program.

Figure 5.4: How ADFs (automatically defined functions) could be implemented in NP.

Chapter 6

Internal Reinforcement in NP

6.1 Introduction

Evolution is a learning process. In NP (or GP for that matter) programs are tested for fitness,
preferred according to those fitness tests, and then changed. Programs need to become new
programs. These program transformations have a specific goal which is to produce programs
that are better, which is to say programs that score higher on the fitness evaluations than
their ancestors. Much of the time this will not happen, but the success of evolution as a
learning process is directly linked to how often a novel program is really more valuable than
the parent it came from. Currently, program transformations are usually random in EC.
Even when they are not random, they do not transform the programs based on how those
programs have behaved in the past. If we could only look into a program and see which parts
of it are "good" and which parts "bad," we could write transformation rules that were much
more effective, which is to say, we could dramatically improve the action of evolution. That
is the motivation for the principled update procedure at the heart of this thesis: internal
reinforcement.

Now that we have introduced the neural programming representation, we can describe
a mechanism to accomplish internal reinforcement. There are two main stages in Internal
Reinforcement of Neural Programs (IRNP). The first stage is to classify each node and arc
of a program with its perceived contribution to the program's output. This set of labels is
collectively referred to as the Credit-Blame map for that program. The second stage is to
use this Credit-Blame map to change that program in ways that are likely to improve its
performance.

Our ongoing research includes investigation into which methods to use to best accomplish
the goals of internal reinforcement. We have identified several methods for accomplishing
each of the two stages. This chapter focuses on one technique for each of the two stages.

Table 6.1 shows the evolutionary learning process for NP and how IRNP fits into that
picture. One Credit-Blame map is created for each program in the population and when the
time comes to perform genetic recombination (the search method in EC) on a particular
program, the Credit-Blame map for that particular program is used.

67

68 CHAPTER 6. INTERNAL REINFORCEMENT IN NP

Create initial population of Neural
Compute Function Sensitivity Approximations

Programs

Determine each program's fitness over the training set
Keep statistics on the outputs of each node of each program

Create a Credit-Blame map for each program
Accumulate explicit Credit-Blame values using collected statistics
Refine Credit-Blame map using bucket brigade procedure

Fitness Proportionate Selection Mating-Pool

f
Genetic Recombination Operators

Use Credit-Blame map for program p:
MUTATIONfp, Credit-Blame map forp)
CROSSOVERS, Credit-Blame map forp)

ö
o

•H

tö

a o
a

(1)

act on Mating-Pool

IRNP additions to EC

Table 6.1: The high level flow of NP learning.

6.2 Creating a Credit-Blame Map

As was described in Section 3.2, without loss of generality, we can assume that the evolv-
ing NP programs are trying to solve a target value prediction problem. This is so because
classification problems (a non-ordered set of output symbols to be learned) can be decom-
posed into target value prediction problems (an ordered set of output symbols to be learned).
Therefore, let us consider an abstract input to output mapping to be learned by the neural
programs.

6.2.1 Accumulation of Explicit Credit Scores

For each program p, for each node x in p, over all time steps on a particular training example
Si, we compress1 all the values node x outputs into a single value Hx. Let the correct answer
(the correct target value) for training instance Si be Li. In other words, Li is the desired
output for program p on training instance S{.

—* —*
We now have two vectors for all |S| training instances: L = [Li..Li..L\s\] and Hx =

[Hl..Hx..Hx
s\\. We can compute the statistical correlation between them. We call the abso-

lute value of this correlation the explicitly computed Credit Score for node x, notated as
CSE. This computation is shown in Equation 6.1.

■"^The compression function used in this thesis is mean.

6.2. CREATING A CREDIT-BLAME MAP 69

KJJX —
E(HX - nA) * E(L - fit)

aHx * at
(6.1)

This credit score for each node is an indication of how valuable that node is to the
program. It is certainly the case that nodes with low credit scores at this stage may still
be critical to the program in question, but it is also certainly the case that nodes with high
credit scores could be very valuable to the program even if they are currently unutilized.
Note that an NP program is, by definition, 100% correct if it has a node with a credit score
of 1 and that node is connected to an output node2. This explicit credit score can also be
thought of as the individual credit score for the node. That is, the explicit credit score takes
into account only how the node acts as an individual, not how it acts as part of a large group
of tightly coupled nodes (i.e., the program it is a part of).

The set of explicit credit scores for all nodes provides a Credit-Blame map for the pro-
gram: a value associated with each node in the program that indicates its individual con-
tribution to the program. However, we want the Credit-Blame map to capture not only a
node's immediate (individual) usefulness, but also it's usefulness in the context of the pro-
gram topology. The following example highlights why the explicit credit scores do not, by
themselves, capture this information.

In this example, nodes x and y produce values and node z computes an XOR of these
two values. In this case, even if z has a high credit score, x and y may not (e.g. CSZ —
0.97, CS^ = 0.14, CSj, = 0.07). There is nothing provably wrong with this situation, but
clearly the topological notion of usefulness has not been captured in these explicit credit
scores. This can be seen because the nodes x and y in this example are partly3 responsible
for node z's success (and are therefore useful) but still have low credit scores.

The Credit-Blame map can be refined to attend to this type of indebtedness relationships
by passing credit and blame back through the NP programs along the arcs. The statistical
correlation between L and Hx constitutes a first approximation to the credit score for node
x. Because nodes are connected to each other, (only a few are directly connected to the
OUTPUT node) and because each node performs a specific function, the Credit-Blame map
needs to be further refined. This process of refining the Credit-Blame map to take advantage
of the topology of the program is described in Section 6.2.3.

6.2.2 Function Sensitivity Approximation

To pass back credit and blame through the neural program topology, we must first answer an
important question: "How does each node act as a function of its inputs?" In other words,

2This is true under the condition that there are no other arcs in the program that terminate in an
OUTPUT node.

3We can say that nodes x and y are partly responsible for the credit score node z receives because, by
definition, the output of the function XOR is dependent on its inputs and CS2 is, by definition, dependent
on the output of XOR. The reason we do not say that nodes x and y are entirely responsible for CSz is that
the function at node z is also an important factor (over and above the inputs node z receives from nodes x
and y) in determining the value of CS2.

70 CHAPTER 6. INTERNAL REINFORCEMENT IN NP

"What i-- the responsibility of each input parameter for the output value produced by each

function'.'
I hi- ptolilcni is very difficult for arbitrary functions, which is one of the main reasons why

ANN In. k|>io|),ination requires differentiate functions (e.g., the sigmoid or the Gaussian).
I "nfuM iin.ti.-!>. we can not always differentiate the functions used in NP programs as they
ni,i\ ii.»i .ilw.iv-. be differentiable (e.g. If-Then-Else).

In .»in \\oik. we introduce Function Sensitivity Approximation, a method for "differen-
tial in«j" .in arbitrary function that can be treated as a black box. The two questions that
linn lion sensitivity approximation can automatically answer about a black box function's
iel.ition to its inputs are "How many and how few parameters can it take (min and max
aiit\ !.'*' .UM! "HOW sensitive is the output value to changes in its inputs?" This discovered
seiis'nix it\ is ;, substitute to the derivative of the function in question.

I.rt us s,,v that the sensitivity of some function / with respect to one of its arguments
l call th.it argument cii) is the likelihood that the output will change at all when the value of
</. is (h,inu<-(| to a new random value selected uniformly from the legal range of values (e.g.,

[-lonii.mnin.
Before describing this discovery of a function's input sensitivity, the issue of nondetermin-

isin must he visited. Does the proposed technique for investigating "black box" functions
still work if some of the functions are nondeterministic? The good news is "yes." PSP-
Yariance is such an example (see Section 5.3.3). PSP-Variance takes four input parameters
and returns the variance of pixel intensity in the rectangular region described by the four
parameters. PSP-Variance(10,15,101,219) is an image region that contains 18,564 pixels.
A fairly accurate value for the pixel intensity variance in that region can be achieved by
sampling a small fraction of those 18,564 pixels.

Table 6.2 shows the simple process for finding the sensitivity of each parameter of a
general, possibly nondeterministic function /. The procedure in Table 6.2 is performed for all
values of A between 1 and the maximum arity of the function. We do not have to determine
this maximum arity ourselves. The key insight is that, finding the sensitivity gives us the
minimum and maximum arities for each function since, for example, the maximum arity is,
by definition, that parameter number above which further parameters have a sensitivity of
zero. Nondeterminism can also be handled by this process and is adjusted for through the
calculation of "Noise" as shown in Figure 6.2.

As an example, consider the function "ADD" for which the user introduced a ceiling so
that any set of numbers that sums to a number greater than that ceiling effectively sums to
exactly that ceiling4. Not having given it a lot of thought, we would have simply described
all the parameters of ADD as equally important (which is true within the sampling error)
and all 100% sensitive to changes in any of those parameters. However, when running our
function sensitivity approximation procedure as we introduced, we find that this is not true.
Table 6.3 shows the values returned by the procedure. It makes sense (after looking at line
four of Table 6.3) that with four parameters that vary randomly in the legal range of values,
a random change in one of those parameters has only a 6.9% chance of affecting the value
returned by this application of the function "ADD."

implementation detail: specifically the legal range of values used in this thesis was [0..256]. This naturally
caused the ADD ceiling enforced to be the value 256.

6.2. CREATING A CREDIT-BLAME MAP 71

Noise := 0; Sensitive := 0;
DO Qs times

Let A be the arity of function /
Let a be the input vector for function /
Pick uniform random values ai,a2,..., CIA for a
Resulto := f(a)
Resultx := /(a)
Change a: parameter a
Result2 := f(a)
If (Resulto ^ Resultj)
If (Resulto ^ Result2)

c Sensitive-Noise öJ,A,i — ö:

•f- random value

Noise := Noise + 1
Sensitive := Sensitive -f 1

Table 6.2: Function Sensitivity Approximation: the process for finding Sj^,ii the sensitivity of a
particular parameter a4- for some function / that is given a parameter vector with A elements.

Params arg 1 sensitivity arg 2 sensitivity arg 3 sensitivity arg 4 sensitivity
1

2

3
4

0.996312
0.655752
0.246964

0.068905

0.659795
0.259000

0.068309

0.240082

0.064403 0.076065

Table 6.3: ADD (min arity is 1 and max arity is 4)

The benefits of Function Sensitivity Approximation are particularly clear in the context
of a function such as "if-then-else." IF-Then-Else is the function "if (a0 < a\) then return a2

else return 03". Left to figure it out for ourselves, we originally assigned the four sensitivities
as (1.0,1.0,0.5,0.5). a2 and a3 are certainly equally important and each has a sensitivity of
0.5. The first two parameters, however, only matter with respect to each other. So for two
random values a° and a°, changing a° to some new random value a\ has only a 33% chance
of changing the value of the relevant test: (a0 < a\). The procedure outlined in Table 6.2
discovered this counterintuitive result automatically as shown in Table 6.4.

Function sensitivity approximation is useful exactly because it works without prior infor-
mation about the function to be analyzed. This means that function sensitivity approxima-

Params arg 1 sensitivity arg 2 sensitivity arg 3 sensitivity arg 4 sensitivity
4 0.322822 0.326114 0.503329 0.490406

Table 6.4: IFTE (IF (X < Y) Then U Else V) (min arity is 4 and max arity is 4)

72 CHAPTER 6. INTERNAL REINFORCEMENT IN NP

Params arg 1 sensitivity
0.853429

arg 2 sensitivity
0.887229

arg 3 sensitivity
0.846371

arg 4 sensitivity
0.875599

Table 6.5: PSP-VARIANCE (min arity is 4 and max arity is 4)

tion also works on user-defined functions. The Parameterized Signal Primitive PSP-Variance,
an example user defined function used by NP, also produces informative sensitivity values.

As just described, all functions are evaluated within the context of the training examples.
This does not affect many functions (e.g., "ADD") but certainly has an effect on an input-
sensitive function like "PSP-Variance." PSP-Variance requires four parameters and this is
easily detected. More interestingly, Table 6.5 shows that the second and fourth parameters to
PSP-Variance are slightly more sensitive to changes than are the first and third parameters.
This does not "mean" anything to NP and IRNP, it is taken for the process of evolution as a
fact about the world. But we can step back and see that, because PSP-Variance interprets its
four inputs (zi, j/i, x2, y2) as a rectangle in a video image with upper left corner (zi,yi) and
lower right corner (2:2,2/2), this 3% additional sensitivity for the second and fourth parameters
tells us that the particular images in this domain tend to be very slightly more variable along
the Y-axis. In itself this does nothing to help solve the pattern recognition problem, but
it is an interesting side-effect of this process of automatic discovery of function argument
sensitivity.

6.2.3 Refining the Credit-Blame Map

We can now combine the topology of the NP program, the explicit credit score for each node,
and the sensitivity values of each primitive function in a bucket-brigade style backward prop-
agation. This bucket-brigade refines the credit scores at each node following the procedure
presented in Table 6.6. The credit scores are refined according to the network topology and
sensitivity of the node functions.

Until no further changes
For each node x in the program

For each output arc (x,y) ofthat node
y is, by definition, the destination node of (x, y)
Let fy be y's node function
Let Ay be the number of inputs y has
Let i be such that (x,y) provides a,- to y
Let Sfy,Ay,i — Sensitivity of fy (relative to Ay and i)

CSX = MAX(CSa Jy>Ay,i CSy)

Table 6.6: The process of bucket brigading the Credit Scores (CS) throughout an NP program.

The high level structure of the procedure presented in Table 6.6 is as follows. For each

6.2. CREATING A CREDIT-BLAME MAP 73

node for each output arc from that node, the node's credit-score will be updated to be
the maximum of the credit-score it already has and the credit-score of the node pointed to
by that output arc times the sensitivity of that destination node to that particular output
arc. We explain this process in detail through a series of questions and answers designed to
identify the important elements of this procedure.

A good first question for this particular method of spreading credit and blame out more
appropriately over each neural program is, "does this process always converge?" The answer
is that as long as the definition of "no further changes" is more specifically "no node changed
its CS value by more than e" (e > 0) then the process always5 halts and typically in only a
few passes.

Note that because of the way SjtA,i is defined (see Table 6.2), parameter a; is very
occasionally replaced by itself and so SENSITIVITY is usually less than 1.0, contributing
to the small number of passes required for the Credit-Blame map to reach quiescence. This
answer to the convergence question is also the answer to the question, "why do not you
use a discount factor (7)? Is not that usual in various forms of bucket brigade?" Using a
discount factor is a common way to insure convergence, but as just noted, it is empirically
unnecessary.

In this context, in which we make clear the use of a sensitivity value for each function,
we can now ask "why define sensitivity in that way?" Remember that we said that the
sensitivity of function fy with arity A to input a; is the likelihood that the output will
change at all when the value of a,- is changed to a new random value selected uniformly from
the legal range of values.

There is no reason to believe that in a complex system such as an evolving NP program,
a node that outputs 0\ will always have a similar effect to a node that outputs 02, no
matter how close 0\ and O2 are on the number line. For example, consider the function
READ-MEMORY(Oi) that returns the value stored in the program's memory array index
Ox. Out of context of a particular program, READ-MEMORY(5) and READ-MEMORY(6)
have as much semantic similarity as READ-MEMORY(5) and READ-MEMORY(77). For
this reason, sensitivity in NP is a percentage of how often the output value of a function is
changed at all, not by how much that output changes.

There is also no reason to believe that in a complex system such as an evolving NP pro-
gram, any particular set of numbers is more or less likely than any other to occur as inputs to
a node.6 The sensitivity discovery process described in Table 6.2 could, for example, change
ai to (öj ± A). Then SjtA,i would measure the likelihood that the output will change when
small changes are made to the input a,-. But since, unlike explicit credit-blame assignment
systems (e.g., ANNs), NP cannot enforce these small changes throughout the program, it is
better to have a measure of sensitivity that matches how the inputs are likely to change: to
first approximation, uniform randomness.

5Proof: If the halt criteria isn't satisfied after a pass, then at least one node credit score has increased
by at least e and no credit score has decreased in value (by construction, see Table 6.6). The total value in
the Credit-Blame map for program p can be at most Np (the number of nodes in p), so the total number of
loops can be no more than -f-.

6This is of course, not entirely true. There are always some more "popular" numbers in a system, but this
regularity is often caused by the interactions between the various functions and this is sufficiently complicated
by the fact that the uniform approximation was adopted.

74 CHAPTER 6. INTERNAL REINFORCEMENT IN NP

Kinalh. consider the equation for refining the credit scores: CS^ = MA~X.(CSX, SjytAy,i *
CS.i. *"\\"li\ >liould CSo: be set to the maximum of itself and iS/^j^CSy?" We first address
tin' IUIH t'n >n MAX as an appropriate operator and then examine the appropriateness of the
set IIIHI I»|X-I.IIHI. In an NP program it is the norm for a single node's output to be used in a
ii111111>«-! i>l ililfnrnt contexts. We would not want to penalize a node for creating an output
tli.it i- \I-I\ useful in one part of the program, but is not taken advantage of in another part
t»f tin- | »mi; tit in. If the output of a node could be "taken advantage of" (in the sense defined
l»\ t In- <-\|>li(it credit score measure), then it is clear that the blame for not taking advantage
of t li.it «»tit put elsewhere in the program is a problem with that other part of the program,
nut tin- luxli- in question. This means that a node's credit score should be a maximum of
.-.(>;;/(linn hmi of its individual credit score and the credit scores of the nodes to which it
»nit |>ut -.

I uitlii'i. consider the case in which node x has an explicitly computed credit score of
(">' . I.vrn if none of x's children (i.e., nodes that take x's output as input) has a credit
score ,is |iin|| ;is CSX, if we believe that the explicit credit score measure is a good first
approximation to the usefulness of a node in a program, then we should insure that CSX

is nevei les-, than its original value. Thus, we introduce CS^ = MAX(CSX, Fr(CSy)) where
/■', is some function to be determined. Now we need to pick some reasonable function Fr to
apply to the credit scores of the children of node x.

The introduced sensitivity analysis of Section 6.2.2. can now be used. We already have
a value that expresses the sensitivity of a node y to an input a, as a function of how many
inputs if has and the particular function that y happens to compute. But that's exactly what
we want! The amount of reward (think CSX) a node x that points to a node y deserves for
that "reference" is exactly how good node y is, CSy, scaled by (i.e., times) how responsive
(i.e.. sensitive) y is to changes in the values that x is passing it. So we have our function
iv(CSy); it is <S/„,4B,,-* CS„.

This discussion highlighted the characteristics of our reinforcement procedure. So in
summary, the refinement of credit scores in the Credit-Blame map is derived from the initial
credit scores, the program's topology, and the discovered sensitivity of each possible node
function.

6.2.4 Credit Scoring the NP arcs

NP program transformations operators (e.g., crossover and mutation) also affect NP program
arcs. So far, the discussion of the Credit-Blame map has entirely focused on assigning credit
and blame to the nodes. The topology of the NP programs, that is the program nodes and
arcs, is used heavily in making this map, but the resulting map assigns one floating point
number to each node and no number to the arcs.

The explanation for this discrepancy is that arcs are even more context dependent than
the nodes that define them. For example, when considering whether to delete a particular
arc (x,y), CSy is a relevant value, but the value of CS^ is much less so. While, on the other
hand, when considering whether to reroute arc (x, y) to some other node z (i.e., arc(x, y) —>
arc(x,z)) the current values CS^, CSy, and CS^ are all relevant. As is detailed in the next
section, the Credit-Blame map has a great impact on the arcs during the IRNP process, but

6.3. USING A CREDIT-BLAME MAP 75

only indirectly through the credit scores of the nodes in the program to be recombined.

6.3 Using a Credit-Blame Map

The second phase of the internal reinforcement is the use of the created Credit-Blame map
to increase the probability that the program updates lead either to a better solution or to a
similar solution in less time. There are two basic ways that the Credit-Blame map can be used
to do this enhancement: through improvement of either the mutation or crossover operators.
In brief, mutation is the process of recombination of a single genotype and crossover is
the process of recombination of two or more genotypes, through genetic material exchange.
Considerable information is available on these methods through sources such as [Koza, 1992].

The possibility of using internal reinforcement (explicit credit-blame assignment) not
only for mutation (which has analogies to the world of ANNs) but for crossover as well is
important. Traditional GP uses random crossover and relies entirely on the mechanism of
empirical credit-blame assignment. Work has been done to boot-strap this mechanism by
using the evolutionary process itself to evolve improved crossover procedures (e.g. [Angeline,
1996, Teller, 1996]). This work has reaped some success, but because of the co-evolutionary
nature of the work, it has not yielded much insight into the basic mechanism of crossover.
IRNP has the potential not only to improve on the existing GP mechanism, but also to help
explain the central mystery of GP, namely crossover. This is one of the interesting directions
for future work.

6.3.1 Mutation: Applying a Credit-Blame Map

Mutation can take a variety of forms in NP. These various mutations are: add an arc, delete
an arc, swap two arcs, change a node function, add a node, delete a node. Notice that change
a node function and swap two arcs are not atomic, but have been included as examples of non-
atomic but basic mutation types. In the experiments shown in the next section, each of these
mutations took place with equal likelihood in both the random and internal reinforcement
recombination cases. For example, to add an arc under random mutation to an NP program,
we simply pick a source and destination node at random from the program to be mutated
and add the arc between the nodes.

Internal reinforcement can have a positive effect on this recombination procedure. For
each recombination type, we pick a node or arc (depending on the mutation type) that has
maximal or minimal credit score as appropriate. For example, when deleting a program
node, we can delete the node with the lowest credit score instead of just deleting a randomly
selected node.

Below are the IRNP procedures for each of the six mutation types mentioned above.
Notice that when the terms "large" and "low" are used (as opposed to the unambiguous
terms "highest" and "lowest"), it indicates that the largest or least credit score is selected
from among a sampled subset of nodes or arcs, depending on the context.

• Add an Arc

76 CHAPTER 6. INTERNAL REINFORCEMENT IN NP

1. Pick a node x with a large credit score.

2. Pick a node y with a low credit score and A inputs such that y would still be
sensitive to input ou+i-

3. Add an arc (x,y).

• Delete an Arc

1. Pick a node y with a low credit score such that y would still be sensitive to its
inputs if one were removed.

2. Pick a node x with a low credit score such that there exists an arc (x,y).

3. Delete arc (x,y).

• Swap Two Arcs (see Figure 6.1)

1. Let x be the node with highest CS^.

2. Let (x, y) be the output arc of a; to a node y that minimizes CSy.

3. For all arcs (u,v) such that v is an OUTPUT node, pick the arc (u,v) that
minimizes CS„.

4. Delete arcs (x,y) and (u,v), and create arcs (x,v) and (w, y).

• Change a Node Function

1. Pick a node x that has a low credit score and such that (x,y) exists and creates
input a,- to node y and SjyiAy,i > 0.

2. Change the function that x computes to another function of similar or lower arity.

• Add a Node

1. Create a new node z with fz, a randomly selected function.

2. Let A be the arity of fz, and let Oz be the number of output arcs from z.

3. Find high credit score nodes xi, ...XA and create the arcs (xi,z) ... (XA,Z).

4. Find low credit score nodes yl5 ... yoz such that Sjy.tAy.+i,Ay+i > 0 for (1 < i <
Oz).

5. Create the arcs (z, j/i) ... (z,yoz)

• Delete a Node

1. Pick a low credit score node x.

2. Remove x and arcs (x, y) and (z, x) for all nodes y and all nodes z in the program.

For each of the procedures, the alternative to IRNP is the equivalent of the traditional
recombination strategy in GP. This "vanilla" strategy in NP is simply to chose randomly
among all syntactically legal options (i.e., no program-behavior based bias in the recombi-
nation). Equivalently, this "vanilla" method for recombination can be thought of as IRNP
with random values in the Credit-Blame map.

6.3. USING A CREDIT-BLAME MAP 77

(wode-y) \Output
V_^/CS=0.05

C8-0.05
—\

C8-0.ll Nod»

[Node-u]

V__^yCS=0.11 (Node-x

CS=0.72

CS=0.19

CS=0.19

-^

CS-0.52

Figure 6.1: The Swap Two Arcs mutation procedure.

6.3.2 Crossover: Applying a Credit-Blame Map

In t lie random version of crossover, one simply picks a "cut" from each graph (i.e., a subset of
the program nodes) at random and then exchanges and reconnects them. Figure 6.2 pictures
this division of a program into two pieces. Details on how this fragment exchange can be
accomplished so as to minimize the disruption to the two programs can be seen in [Teller,
1996].

We keep this underlying mechanism and present an IRNP procedure that selects "good"
program fragments to exchange. This means that IRNP has, as it's only job, to choose the
fragments to be exchanged, but the way in which program fragments are exchanged and
reconnected is unaffected by IRNP. There is much to be gained by taking advantage of the
Credit-Blame map during this fragment exchange and reconstitution phase, but to focus the
thesis work and contributions, this aspect of the use of credit-blame assignment has been
left as future work.

Given that we separate a program into two fragments before crossover, let us define
CutCost to be the sum of all credit scores of m^er-fragment arcs, and InternalCost to be the
sum of all credit scores of mtra-fragment arcs in the program to be crossed-over.

NP program arcs have a shifting meaning and so their credit score must be interpreted
within the context of the search operator being used. For the context of crossover we take
the credit score of an arc to be the credit score of its destination node.

Now we say that the cost of a particular fragmentation of a program is equal to Cut-
Cost/ InternalCost. If we try to minimize this value for both of the program fragments we
choose; we are much less likely to disrupt a crucial part of either program during crossover.
Table 6.7 outlines this IRNP crossover procedure.

78 CHAPTER 6. INTERNAL REINFORCEMENT IN NP

Internal Arcs External Arcs

Figure 6.2: Crossover in NP: A single graph of nodes and arcs is fragmented with a cut into two
fragments such that every node in the original graph is now either in Fragmentj or Fragment2 and
every arc is either an internal or external arc.

6.4 Exploration vs. Exploitation Within a Program

This thesis has already touched on the issue of exploration vs. exploitation within the search
process. A similar tension exists within the recombination of a single program. On the one
hand, it seems clear that IRNP should leave alone the "best" parts of the program and focus
its changes on the "worst" program aspects. There are, however, two problems with this
view. The first is that a "bad" part of the program must be more carefully defined. There
are program nodes that have very low scores in the program's Credit-Blame map that do
affect the values flowing into the OUTPUT nodes and there are low score nodes that do not
affect the values flowing into the program OUTPUT nodes. This is the node participation
problem. To be most effective, IRNP should change the first type of low score nodes, but
not the second. This is so because, for example, changing what function a particular node
computes is a piece of wasted search if that node's old function had no effect on any of the
program's OUTPUT nodes.7

The second problem with seeing IRNP's job as simply focusing on the "bad" parts of a
program is that, occasionally, the best way to improve a program is to make the right change
to an aspect of the program that is already working well. It is easy to imagine a program in
which node y computes a0 + «i is almost right, but the program would work even better if

that node computed üQ * a\ instead.
IRNP does address both these issues. With regards to the second problem, IRNP does

7This claim assumes that there are no functions that have side-effects that affect later computation within
the program. An example of such functions are the indexed memory READ and WRITE functions.

6.4. EXPLORATION VS. EXPLOITATION WITHIN A PROGRAM 79

Pick k random cuts of prog p (Fragment^ Fragment^)
For candidate cut i

For each arc(:r, y) in p
Let L*barc(Xjy) = Coy

if (x and y are in the same Fragment^) (j€{l,2})
InternalCost = InternalCost + CSarc(x,y)

else
CutCost = CutCost + CSy

CutRankingi = CutCost / InternalCost
Choose the cut that produced the lowest CutRanking

Table 6.7: The IRNP process for choosing a "good" fragment of a program to exchange through
crossover.

occasionally change high credit-score aspects of a program. It is partly for this very reason
that the mutation operators only look at a fraction of the nodes in a program before picking
one to change. This means that with low probability, the "worst" program aspect seen by a
particular mutation operator will still be one of the high credit-score nodes for that program.
An interesting piece of future work for IRNP is the following. Instead of simply restricting
how often the recombination operators change high credit-score aspects of a program, how
these aspects are changed could be different. In other words, for example, mutation could be
further refined so that it did "less damaging" mutations when a high credit-score node was
chosen to be changed (e.g., ADD -> MULT is "less damaging" than ADD -» If-Then-Else).

IRNP also addresses the node participation problem. If the Credit-Blame map had a
participation flag for each program node, IRNP could take advantage of these flags by, for
example, simply augmenting the mutation policies described in Section 6.3.1. This is exactly
the case. We now describe how these flags are set and the modification to the mutation and
crossover policies.

These participation flags are set using the process shown in Table 6.8.
Now that the Credit-Blame map includes these participation flags, the mutation and

crossover operators can be adjusted to take advantage of them.
Here are the revised mutation procedures:

• Add an Arc

1. Pick a node x with a large credit score.

2. Pick a node y with a low credit score and Participation^ = 1 and A inputs such
that y would still be sensitive to input a^+i

3. Add an arc (x,y)

• Delete an Arc

80 CHAPTER 6. INTERNAL REINFORCEMENT IN NP

For each node x in the program
Participation^. <— 0

For each node x in the program
if (node x is an OUTPUT node)

Participation^ <— 1
While (flags still changing)

For each node x in the program
if (arc (x,y) exists and creates a; for node y) and

(node y has Sjy,Ay,i > 0) and
(Participation^ = 1)

Participation^. •<— 1

Table 6.8: The procedure for assigning the participation flags to nodes in each program's Credit-
Blame map.

1. Pick a node y with a low credit score such that y would still be sensitive to its
inputs if one were removed and Participation^ = 1.

2. Pick a node x with a low credit score such that there exists an arc (x,y).

3. Delete arc (x,y).

• Swap Two Arcs (see Figure 6.1)

1. Let x be the node with highest CS^.

2. Let (x, y) be the output arc of a; to a node y that minimizes CSy.

3. For all arcs (u, v) such at v is an OUTPUT node, pick the arc (u, v) that minimizes
Cou.

4. Delete arcs (x,y) and (u,v) and create arcs (x,v) and (u,y).

• Change a Node Function

1. Pick a node x that has a low credit score such that (x, y) exists and creates input
ai for node y, Sfy,Ay,i > 0, and Participation^ = 1.

2. Change the function that x computes to another function of similar or lower arity.

• Add a Node

1. Create a new node z with fz, a randomly selected function.

2. Let A be the arity of fz and let Oz be the number of output arcs from z.

3. Find high credit score nodes a?i, ...XA and create the arcs (xi,z) ... (XA,Z).

6.5. THE CREDIT-BLAME MAP BEFORE/AFTER REFINEMENT 81

I. Find low credit score nodes j/i, ... yoz such that Sf .,Ay+i,Ay-+i > 0 and
Participation = 1 for all i in [1..02].

V ('ri'iitc the arcs (z,j/i) ... (z,yoz)

• Delete a Node

I. Pick <i low credit score node x with Participation^ = 1.

■J. Prmove x and arcs (x, y) and (z, x) for all nodes y and all nodes z in the program.

I lie jii.M c-s for picking good fragments to exchange in crossover now needs to be modified
liülitlv. l.tUc (>.!) describes this modified decision process with the modification shown in

Pick k random cuts of prog p (Fragment^ Fragment2)
For candidate cut i

For each arc(x,y) in p
Let Kjoarc(Xty) = Lbj

if (x and y are in the same Fragment^) (je{l,2})
InternalCost = InternalCost + CSarc(x,y)

else
CutCost = CutCost + CSy

CutRankingi = CutCost / InternalCost
Choose the cut that produced the LOWEST CutRanking with
at least one participating node on each side of the cut

Table 6.9: The IRNP process for choosing a "good" fragment of a program to exchange through
crossover.

6.5 The Credit-Blame Map Before/After Refinement

This chapter has explained exactly how IRNP is carried out and the impact that it has on
the evolution of the programs involved. It was claimed that the bucket brigade algorithm
described in Section 6.2.3 actually does spread the credit score values out to aspects of the
program that previously were not rewarded. This section illustrates the spreading of this
value using a real snap-shot during the IRNP in a normal PADO run. Table 6.10 shows a
typical (though small) NP program from Generation 8 of a run learning to classify signals
from the generic signal domain. Appendix E shows this program including its arcs.

Table 6.10 shows the Credit Scores for each node at an intermediate stage in the credit-
blame assignment process as described in this chapter. Namely, the credit scores shown in
Table 6.10 have undergone the process of Section 6.2.1, but not the process of detailed in

82 CHAPTER 6. INTERNAL REINFORCEMENT IN NP

Node CreditScore Function Node CreditScore Function Node CreditScore Function

0 0.000000 060 1 0.000000 Clock 2 0.000000 144

3 0.000000 Clock 4 0.000000 211 5 0.000000 Clock

6 0.000000 094 7 0.000000 182 8 0.000000 145

9 0.000000 165 10 0.000000 182 11 0.000000 045
12 0.000000 036 13 0.206935 Output 14 0.256266 PSP-Pnt

15 0.000000 Divide 16 0.697369 Output 17 0.130193 Add

18 0.196399 PSP-Max 19 0.357697 Add 20 0.000000 Multiply
21 0.331573 Output 22 0.225413 PSP-Pnt 23 0.039100 Multiply
24 0.314305 Subtract 25 0.000000 If-T-E 26 0.225413 Multiply

27 0.238077 If-T-E 28 0.000000 Split 29 0.091500 PSP-Max

30 0.735100 Split 31 0.433461 Subtract 32 0.120807 Add

33 0.000000 Subtract 34 0.433530 PSP-Pnt 35 0.004648 Add

36 0.000000 Multiply 37 0.000000 Add 38 0.282299 PSP-Max

39 0.225413 Multiply 40 0.000000 If-T-E 41 0.016246 Add

42 0.699286 Output 43 0.331573 Subtract 44 0.000000 Add

45 0.000000 Add 46 0.000000 Add

Table 6.10: A sample NP program (without the arcs) at the end of Generation 8 of evolution,
after the Credit Scores have been assigned, but before the bucket brigade refinement has taken
place. These are the explicit credit scores.

Section 6.2.3. Table 6.11 shows this same NP program after the bucket brigade refinement
process has taken place.

The bold faced credit scores in Table 6.11 are those values that changed during the
bucket brigade credit score refinement process. Notice that more than half of the credit
scores changed values during this process, many of them dramatically. The number of credit
scores at 0.0 dropped from 52.17% to 17.39% due to the refinement process. Notice also
that even the OUTPUT nodes have their credit scores changed during this process since the
output from an OUTPUT node may be very useful, even if it is not in itself the highest
correlation node in the program.

6.6 IRNP and Indexed Memory

It should have been made clear by this point in the thesis that NP programs are nearly
Turing complete in that they have a sufficiently complex function set, memory, and iteration.8

Technically, a Turing complete program must have access to arbitrarily extendible memory,
though in practice this is never actually provided. In NP, the form of memory that has been
described, and which will be used throughout the rest of this thesis, is the data-flow memory
of a program. A program with, for example, 312 arcs has a memory capacity of 312 distinct
values and many billions of states even for restricted ranges of these values. This is implicit
memory use (i.e., memory use through the representation itself) rather than explicit memory

8See Appendix B for complete details.

6.6. IRNP AND INDEXED MEMORY 83

Node CreditScore Function Node CreditScore Function Node CreditScore Function

0 0.000000 060 1 0.000000 Clock 2 0.000000 144

3 0.668100 Clock 4 0.000000 211 5 0.118573 Clock
6 0.432689 094 7 0.085486 182 8 0.001133 145
9 0.085897 165 10 0.166522 182 11 0.694260 045

12 0.162969 036 13 0.253838 Output 14 0.256266 PSP-Pnt

15 0.039802 Divide 16 0.697369 Output 17 0.640655 Add
18 0.685729 PSP-Max 19 0.357697 Add 20 0.000000 Multiply
21 0.681141 Output 22 0.667553 PSP-Pnt 23 0.039100 Multiply
24 0.685848 Subtract 25 0.000000 If-T-E 26 0.250230 Multiply
27 0.238077 If-T-E 28 0.425428 Split 29 0.091500 PSP-Max
30 0.735100 Split 31 0.433461 Subtract 32 0.120807 Add
33 0.000000 Subtract 34 0.433530 PSP-Pnt 35 0.004648 Add

36 0.263743 Multiply 37 0.685487 Add 38 0.282299 PSP-Max
39 0.669771 Multiply 40 0.000000 If-T-E 41 0.655078 Add
42 0.699286 Output 43 0.683490 Subtract 44 0.643737 Add
45 0.671457 Add 46 0.000158 Add

Table 6.11: A sample NP program (without the arcs) at the end of Generation 8 of evolution,
after both the Credit Scores have been assigned, and after the bucket brigade refinement has
taken place. The values in bold are the values changed by the refinement process.

use.

Indexed Memory [Teller, 1994a] is an example of explicit memory use in GP. In In-
dexed Memory, the evolving program is given access to an array of memory cells through
the two functions READ(O0) and WRITE(<30A)- READ(O0) returns the value stored in
MEMORY-ARRAY[O0]. WRITE(OoA) returns the value stored in MEMORY-ARRAY[O0]
and has the side-effect of updating MEMORY-ARRAY[0O] to it's new value: Ox. In-
dexed Memory has been extensively studied in GP (e.g., [Teller, 1994a, Andre, 1995,
Langdon, 1995, Langdon, 1996]) and has demonstrated itself to be a valuable form of mem-
ory use for evolving programs. As such, this thesis is enhanced by a momentary diversion
to talk about the incorporation of such an explicit memory use in the context of IRNP.

IRNP makes an assumption that is not completely general which is that none of the func-
tions have side-effects that affect later computation or the eventual response of the program.
An example of such a function that violates this assumption is the function WRITE(Oo A)
since it has a side-effect which is to alter the program's indexed memory structure. The
natural question is "can IRNP still operate with these functions even though they violate a
basic assumption built into IRNP?"

In order to answer this question, we can perform a controlled experiment. We will use
the generic signal domain first described in Section 4.2.1 and the problem will be the same:
"classify to which of the four classes a particular signal belongs." We will simply add two
new functions to the function set used in this domain: READ(Oo) and WRiTE(OoA)-
These two functions will act upon an indexed memory array of 10 cells.

It is a well known phenomenon in evolutionary computation that adding functions to

84 CHAPTER 6. INTERNAL REINFORCEMENT IN NP

the function set available to an evolving system often has a dramatic effect on the system's
prrform.iiix' [Andre and Teller, 1996]. So, the control for this experiment will be a set
of inn- in which, to the usual function set we add the two functions: READ-FAKE(O0)
;m<l WIM I l>l'AKE(Oo,Oi), both of which simply return 0. Notice that these two "fake"
function- ili> not violate the side-effect assumption IRNP makes.

H..t 11 ol t li.-vr experiments are run in the context of IRNP, so the differences in the graph
;■!■«• (.iih-,1 l,\ t he benefit IRNP can derive from the "real" READ and WRITE functions and
t In ■ II.M in t luit violating the side-effect assumption causes to the workings of IRNP. Figures 6.3
iitnl l.. I »how the results for this experiment for two different orchestration strategies.

NP evolution in PADO on the Generic Signal Domain

o 0.9
o
**■
c
o 0.8
«1
Kl

(D 0.7
<D
C
0)
o>
ai 0.6
M
in
d>
1- 0.5

REAL Indexed Memory
CONTROL Indexed Memory

10 15 20 25
Generations

30 35 40

Figure 6.3: IRNP working with Indexed Memory and "Control" Indexed Memory, both using
Search-Weight orchestration.

NP evolution in PADO on the Generic Signal Domain
1

.
Ü
CD

0.95
o
Ü
»8
c 0.9
o
IS

0.85 a
<o c
CO 0.8
CD
W

0.75
o
K

0.7

REAL Indexed Memory
CONTROL Indexed Memory

10 15 20 25
Generations

30

^T.$..ft-4--$

35 40

Figure 6.4: IRNP working with Indexed Memory and "Control" Indexed Memory, both using
Nearest Neighbor orchestration.

We can see in Figures 6.3 and 6.4 that PADO performs very slightly better with READ
and WRITE than with READ-FAKE and WRITE-FAKE. This is good news for two reasons:
first, it means that PADO, NP, and IRNP can take some minimal advantage of the indexed

6.7. IRNP IN TREE BASED GP 85

memory when it is made available. Second, and much more importantly though, it is clear
that tin- iiitioilnction of functions that violate the IRNP side-effect assumption do not cause
IRNT in liir.tk <lown.

I in- |M'i(.iniuince improvements due to READ and WRITE are tiny. This is because
tln'ii- i- .ilir.uly memory in use in the NP programs, the implicit memory use in the data-
llov. iii«-iiioi\ «MI the arcs. This, combined with the fact that this domain does not require
;i I.ML

1
«- .uiiMinit of memory to solve the problem, makes the READ and WRITE functions

ic<luiii|.tii!. -o ur can hardly expect more improvement than Figures 6.3 and 6.4 show us.
I In■ n--illi- of this section should not be taken to suggest that IRNP cannot be expanded

to im hid«' iinlrxed memory as the dominant form of memory use, only that it has been
kit fot tm in-*- work. In principle, memory of any form (and indexed memory in particular)
< itrJ l><- »•x.unitircl during execution just like the rest of the program. Indexed memory cells
could, foi «-\,ini|)le. be treated as time-delay arcs; to describe it in terms of the memory use
«in it-Mi |v in place in NP in PADO. Once the implementation had been augmented with that
cii|i.il)ilii\. tin- rest of the IRNP procedure worked as described in this chapter.

6.7 IRNP in Tree based GP

NP «nid IRNP were designed simultaneously to add computational expressiveness to algo-
rithm evolution (NP vs. traditional tree-GP) and to solve some of the learning difficulties
that this new level of computational expressiveness introduced (IRNP vs. unguided genetic
operators). This does not mean, however, that IRNP only applies to NP. The concept of
internal reinforcement is very general and can be illustrated in other representations.

The single most popular representation for algorithm evolution is the tree representation
(S-expression) of traditional GP. Let us see how IRNP can be simply translated to the
tree-GP representation.

IRNP has the following major components:

1. Observe the program as it runs and create a first approximation Credit-Blame map.

2. Do Sensitivity-based bucket brigade to redistribute the reward through the Credit-
Blame map.

3. Use mutation and crossover operators that attend to the details of this Credit-Blame
map.

Step 1 is independent of the topology of the programs. As long as each program is
composed of distinct atomic functions (e.g., ADD, MULT, COS, 17), each distinct atomic
function (a node in both NP and Tree-GP) can have statistic taken about its actions exactly
as described in Section 6.2.1. These statistics can be turned into credit scores in exactly the
same way with Tree-GP as with NP since, again, this has nothing to do with the topology
of the programs.

Step 2 can also be accomplished in Tree-GP. Sensitivity Function Approximation can
be done on any function. So the Tree-GP representation is no obstacle to discovering the
sensitivity of the atomic functions out of which the programs are built. And the bucket

86 CHAPTER 6. INTERNAL REINFORCEMENT IN NP

brigade described in Section 6.2.3 relies only on the fact that there are nodes and arcs
that describe the program. Whether those nodes and arcs happen to have loops (as they
generally do in NP programs) or not (they clearly do not in a tree-structure) is immaterial
to the algorithm. So the Credit-Blame can be created in exactly the same manner.

In Step 3 there must be some small deviation between the algorithms for internal rein-
forcement of the two representations, but the differences are superficial. Crossover in NP
is a cut in a graph. This means that many arcs will be disrupted. In tree-GP, crossover
always disrupts exactly one arc in each program. This actually simplifies the IR algorithm
for Tree-GP. Now crossover need just minimize the credit score of the arc it is breaking
while maximizing the average internal arc credit score. Mutation in IRNP, as described in
Section 6.3.1, takes advantage of the fan-out of "good ideas" in NP. This cannot be done,
by definition, in a tree-based representation. However, Tree-GP can be modified to a related
representation, usually used just for space-saving reasons, called DAG-GP. In this represen-
tation, the GP programs are composed of nodes and arcs. Each node is still a terminal or
non-terminal in GP-speak (i.e., an atomic function such as "ADD"). The only difference is
that the topology of the programs is allowed to be a DAG instead of a tree. From a com-
putational expressiveness point of view this makes no difference as there are no loops in a
DAG. Now mutation can be redefined to take advantage of the Credit-Blame map and it can
do many of the same procedures described in Section 6.3.1. Clearly the mutation procedures
that refer to an OUTPUT node will need to be altered, but only slightly as there is a single
"output" node for each Tree-GP program. That node is the root node.

This outline shows how IRNP can be successfully transferred to another representation

for the evolution of programs.

Chapter 7

Experimental Results

7.1 Experimental Overview

The purpose of any set of experiments is to test a set of hypotheses. The goal of the
experiments done in this thesis and shown in this chapter is to demonstrate several general
attributes of the PADO, NP, and IRNP approaches:

• PADO successfully applies to a wide variety of signal domains and that the orchestra-
tion method employed matters.

• PADO can work equally well in domains with different numbers of classes.

• The IRNP procedure substantially improves learning across a variety of signal domains
and this phenomenon is not overly sensitive to the orchestration method employed.

In a conscientious research approach, an attempt will be made to verify that the system
created (and therefore the results produced) is not overly sensitive to changes in the parame-
ters. To some extent the previous chapter has already addressed this problem. This chapter
makes the same point but in a different manner. Unless otherwise stated, all the parameters
in all the experiments discussed in this chapter were fixed to the same values. By demon-
strating the different experimental goals across several experiments, without adjusting the
parameters, it will become clear that the PADO and IRNP systems are not overly sensitive
to those parameters. All these fixed values can be found in Appendix C.2. Table 7.1 gives
the values for the most important parameters and Table 7.2 gives the fixed set of program
primitives used in all the experiments.

A number of the parameters in Table 7.1 are very small for a specific reason. For example,
in PADO a discrimination pool (sub-population) of population 250 programs is, by GP
standards, quite small. The programs are only allowed to run for 10 timesteps before their
answer is extracted from them. Given the complexity of the problems, this is a very minimal
number of timesteps. The MaxNumberlnputs need be no larger than four simply because no
function (PSP or otherwise) used by the evolving programs happens to use more than four

1If-Then-Else(ao,01,02,03) is defined as "if ao < a\ then return a-i else return 03."
2Split(a0) returns MaxCONST if a0 > MaxCONST-MinCQNST and MinCONST otherwise.

87

CHAPTER 7. EXPERIMENTAL RESULTS

Crossover Percent Chance 36
MutationPercent Chance 60
PopulationSize (250*NumClasses)
MaxNumberNodes 80
MinNumber Nodes 10
NumberlnTournament 5
NumTimeStepsToRun 10
MaxGenerations 80
MaxNumberOutputs 5
MaxNumberlnputs 4

Table 7.1: Fixed experimental values for the most important PADO parameters.

Table 7.2: PADO program primitives used
Manipulation type
('ontinuous Add Sub Mult Div OUTPUT
('lioice If-Then-Else1 Split2

Signal SignalPrimitive0 ... SignalPrimitive,-
Zoro-Arity O..MaxValue Clock

parameters. However, MaxNumberOutputs is limited to five and limiting the program's fan-
out in this manner is another limitation on what it can practically be evolved to accomplish.
In these experiments, OUTPUT simply outputs the average of the input values and adds
that average (weighted by the time) to the accumulating weighted average response value
(see Appendix C.3.2 for details). Clock simply returns the time step number on that time
step.

There are two reasons for these limitations in the evolutionary process. The first is the
simple fact that evolution is slow. These are complex programs examining large input signals
over a period of time using computationally non-trivial PSPs. The end result is that a full
run of an entire population to generation 80 can take 2 to 24 hours depending on the machine
used and the size of the input signal.3 This means that doing 60-75 independent runs for
statistical significance can take as much as a month. And that is only one of the curves
presented.

The second equally important reason for the parameter limitations set for PADO is to
reduce the amount of overfitting that occurs. With the exception of the first experiment
in this chapter (Section 7.2) the problems in these experiments are all real world problems.
This means that there' is a very limited amount of training data available. The less training
available, the quicker a machine learning technique will tend to over fit the training data.

3For two extreme examples, a run to generation 40 of the generic signal domain on a Dec AlphaStation
250 4/266 takes about an hour. A run to generation 80 of the natural images domain on a Sparc5 takes
about 20 hours.

7.2. GENERIC SIGNAL DOMAIN 89

The >iii»lr easiest way to avoid (or at least put off) this difficulty is to reduce the number of
free p.it.unrtrfs in the model being learned. So, some of the parameters were fixed to these
limit««! \.ilii«"- to help avoid overfitting.

I lie -IIIIII11iti\- of these experiments does indeed satisfy the demonstration goals for this
IIH-M- l.\|»i-iiiiu'nts are run on four totally dissimilar domains and the PADO approach does
quite v.i-ll in ,i|| Tour. Experiments are run on three different classification set sizes and the
l'\l>() ,I|>|>HI.II h does quite well in all cases. Several experiments show not only PADO run
with IlkNI*. Imi without IRNP as well. In all those cases PADO does noticeably better when
IK \ I' i- .i< i i\e as part of the learning process. All these results are shown to be true for two
\«'i\ il'illcM-nt orchestration techniques (Weight-Search and Nearest-Neighbor), using a fixed
sei of li-.iiniii«: parameters. Notice in particular that empirically, the harder the problem, the
t/nah i tin iJ]i(K ncy gain provided by IRNP.

A wot <| of description about the method of presentation before we launch into the ex-
periment-. It i- customary in EC (and GP in particular) to present either the percentage of
null jit mit at i-itti.s that resulted in a particular level of performance or the mean performance
h it I mli a ml on average over many independent runs. This thesis uses the latter method
foi pK-M'iiiin» the experimental results. Be aware then, that the results presented are not
the IM-M PADO has ever done on a particular domain, but a report of the kind of perfor-
iiiaiHi yon can expect from PADO during an average run. The detailed graphs that include
statistical (-nor information have been separated and grouped in Appendix H.

7.2 Generic Signal Domain

7.2.1 Description of the Domain and Problem

This domain was presented in detail in Section 4.2.1. Briefly, this domain is a manufactured
signal type created to have a number of properties appropriate for testing the PADO system.
An example signal from each of the four classes from both the training and testing sets is
shown in Figure 7.1. The distinguishing signal feature in this domain is the slope. Table 7.3
shows the formal definition of these four signal classes. Informally, a high level correct
classifier of the four classes is:

Class 1 has a positive slope. Class 2 has negative slope followed by a positive
slope. Class 3 has a negative slope. Class 4 has a positive slope followed by a
negative slope.

These are the sources of noise in this domain:

• The slopes vary uniformly within the ranges [-0.156,-0.078] and [0.078,0.156]

• The midline of the signal (mean of all signal values) before noise is added, varies
uniformly within the range [75,190]

• Each point of the signal varies uniform randomly from the "correct" line (defined by
the midline height and the chosen slopes) by an offset in the range [-25,25]

90 CHAPTER 7. EXPERIMENTAL RESULTS

Class 1 fi{x) = mx -\-b-\-n
Class 2 fi(x) = mx + b + n 000 < x < 127

m x + 6 + n 128 < x < 255
Class 3 fs(x) — m x + b + n
Class 4 f4(x) = m x + b + n 000 < x < 127

mx + b + n 128 < x < 255

Where m m , 6, and n are random variables uniformly distributed
over [0.078,0.156], [-0.156,-0.078], [75,190], [-25,25]
respectively.

Table 7.3: Formal Definition of Generic Domain Signal classes.

7.2.2 Setting PADO up to Solve the Problem

In each of the two experiments in this section the total population size was 1000 (i.e., 250*4).
Each point on each graph is an average of at least 75 independent runs. A total of 200 (50
from each of 4 classes) signals were used for training, and a separate set of 500 (125 from
each of 4 classes) signals were withheld for testing afterwards.

The PSPs used in these experiments were as follows:

PSP-Point(a0) takes a point on the signal and returns the value of the signal at that point
(Signal [a0]).

PSP-Average(a0,ßi) takes an interval on the signal and returns the average value of the
signal in the signal interval [a0,«i]-

7.2.3 The Results

Figures 7.2 and 7.3 show PADO's performance in this generic signal domain with and without
IRNP in the context of the Weight-Search orchestration and Nearest-Neighbor orchestration
methods respectively. Figure 7.4 shows PADO's performance for both IRNP curves out to
generation 40 to demonstrate the effectiveness of the technique in this domain. Notice that
unlike the rest of the experiments in this chapter, the experiments in this section are only
run to generation 40. This is because the problem is sufficiently easy and therefore PADO
has often produced a perfect solution within the first 40 generations.

Now that there are specific curves to examine, we can revisit how these figures are to
be read. Each figure shows computational effort in generations (therefore also time) as
the independent variable (x-axis) and generalization performance percent correct as the
dependent variable (y-axis).

7.2. GENERIC SIGNAL DOMAIN 91

SAMPLE
Class 1

#|*P
BO 100 150

TRAINING
Class 2

^l%t###

SIGNALS
Class 3

If A»

Class 4

160 ZOO £S0

l/|VN%Mty

200 MO

SAMPLE
Class 1

011

TESTING
Class 2

MIWI0**

SO 100

p

SIGNALS
Class 3

i%

Class 4

pif#Wf«iri

200 2»

Figure 7.1: Example testing and training signals from the example domain.

Figures 7.2 and 7.3 compare PADO and NP with and without IRNP as a guiding light for
the genetic recombination operators. We can see that in both cases (for two different orches-
tration strategies) IRNP improves the learning efficiency by a considerable margin. Figure 7.4
compares PADO, evolving NP programs, with these same two orchestration strategies. We
can see that Nearest-Neighbor orchestration is better than Weight-Search orchestration and
that IRNP has noticeably improved on the effectiveness as well as the efficiency of algorithm
evolution.

Each point in each of these figures is an average over at least 75 independent trials.
This means that a particular point on one of these graphs represents the expected cost in
computational effort required to reach a particular level of generalization performance. Notice
that by generation forty, both curves in Figure 7.4 have nearly, but not quite reached 100%
generalization performance on the test set. This is not because PADO never entirely solves
this problem. In fact PADO finds a perfect solution before generation 40 almost 50% of the
time. However, as with any non-exhaustive search method, the possibility of local maximum
exists for evolutionary computation. Some of the time PADO finds a solution that, for
example, generalizes to 98.2% of the testing set but no more, and further learning effort does
not improve upon this very good, but imperfect solution. In general, when looking at these
graphs of PADO's performance, keep in mind that these curves represent not the worst or
best that PADO has ever done, but the expected performance level for that expenditure of
computational effort.

In Figures 7.2 and 7.3, the graphs show that IRNP provides slightly less than a factor
two increase in efficiency. Efficiency, as it is referred to in this chapter, is speed measured in

92 CHAPTER 7. EXPERIMENTAL RESULTS

■y 0.9

0.85
o
e

0.8
C
O 0.75

N 0.7
fQ

G 0.65
O

a

0.6

0.55

0.5

0.45

NP evolution in PADO in the Generic Signal Domain

y *■* X ++')? .+■
0 ■+■

/ +"+"
/ +

+ WITH IRNP recombination -e—
/ .+•■' WITHOUT IRNP recombination ■■+

- / ^ ~
9■■+'

-/*

i i i i i i —i

35 40 0 5 10 15 20 25 30
Generations

Figure 7.2: NT learning with and without IRNP using PADO Weight-Search orchestration.

NP evolution in PADO in the Generic Signal Domain

X> a
t o
O

05

0.95 -

v8^ J.-+'
0.9

0.85 if WITH IRNP recombination -e—
WITHOUT IRNP recombination ■■+-■-

0.8

i i i i i i i -

40 0 5 10 15 20 25 30 35
Generations

Figure 7.3: NP learning with and without IRNP using PADO Nearest-Neighbor orchestration.

performance per computational effort. Performance is measured in generalization percentage
correct on the test-set. Computational effort is measured in generations.

The rest of the domains in this chapter are sufficiently difficult in that finding a perfect
solution (i.e., a solution that generalizes perfectly) is incredibly unlikely. However, for this
generic signal domain, it is fairly likely. Another piece of empirical evidence in favor of IRNP
is that over 75 independent experiments, PADO without IRNP was only 58% as likely to find
a perfect solution by generation 40 as PADO evolving in the context of IRNP. Empirically,
the harder the problem, the greater the efficiency gain provided by IRNP.

7.2.4 Result Variance from Parameter Changes

Appendix C.2 describes the various parameters of the PADO, NP, and IRNP systems. There
are a number of parameters (e.g., PopulationSize) that there is little reason to suspect IRNP
is brittle with respect to. There are other parameters, however, for which it is possible that
IRNP would be highly sensitive. The clearest examples of such parameters are the related

7.2. GENERIC SIGNAL DOMAIN 93

1
^
o

0 9
o
Ü
*8
c 0.8
o
CU
N 0.7
CO
CD
C
CD TO 0.6
CD

C/J
■*-< 0.5
CD
1-

0.4

NP evolution in PADO in the Generic Signal Domain

<S>o O-O ~Q-b-O■■?■-<>■<> t

IRNP Nearest-Neighbor -«■--
IRNP Weight-Search -+-

10 15 20 25
Generations

30 35 40

Figure 7.4: NP learning with IRNP using PADO Weight-Search and Nearest Neighbor orches-
trations.

parameter: CrossoverPercentChance and MutationPercentChance.
For this thesis, CrossoverPercentChance has been fixed at 36% and MutationPercentChance

has been fixed at 60%.4 Figures 7.2, 7.3, and 7.4 were all generated with those particular
values for CrossoverPercentChance and MutationPercentChance. This section presents a
deviation from these values as a demonstration that IRNP provides significant benefits in
both the crossover and mutation recombination strategies. To this end, the experiments
presented in Figures 7.2, 7.3, and 7.4 are here redone with CrossoverPercentChance set to
60% and MutationPercentChance set to 36%. Figures 7.5, 7.6, and 7.7 show the results of
these experiments.

0.9

o 0.85
CD

O
O 0.8
^S

0.75
o
CO
N 0.7
CO
CO 0.65
CD o>
o 0.6

CO

0.55
1-

0.5

0.45

PADO learning using Search-Weight orchestration on the Generic Signal Domain

-

/>' iS^ IRNP Weight-Search C60M36 ■•©•■■■■
/ S Without IRNP Weight-Search C60M36 -t— -

OS' jf -
P / .

6 j/

" V
"

1 1 1 1 1 1 1

~

10 15 20
Generations

25 30 35 40

Figure 7.5: NP learning with and without IRNP using PADO Weight-Search orchestration
CrossoverPercentChance=60% and MutationPercentChance=36%.

These changes to the values of crossover and mutation that are used in the rest of this
thesis actually improve the results by a small margin.

4Both of these values were chosen for historical reasons [Teller and Veloso, 1996].

94 CHAPTER 7. EXPERIMENTAL RESULTS

PADO learning using Nearest-Neighbor orchestration on the Generic Signal Domain

0.95

0.85

0.75

IRNP Nearest-Neighbor C60M36
Without IRNP Nearest-Neighbor C60M36

10 15 20
Generations

25 30 35 40

Figure 7.6: NP learning with and without IRNP using PADO Nearest-Neighbor orchestration
CrossoverPercentChance=60% and MutationPercentChance=36%.

7.3 Natural Images

7.3.1 Description of the Domain and Problem

There are seven classes in the domain used in the following experiments. Figure 7.8 shows
one randomly selected video image from each of the seven classes in both the training and
testing sets. This particular domain was created as a domain for machine learning and
computer vision [Thrun and Mitchell, 1994]. Each element is a 150x124 video image with
256 level of grey. Originally, these images were color images, but the color was later removed
from the images to make the problem sufficiently difficult to be interesting [Teller and Veloso,
1997].

The seven classes in this domain are: Book, Bottle, Cap, Coke Can, Glasses, Hammer,
and Shoe. The lighting, position, and rotation of the objects varies widely. The floor and
the wall behind and underneath the objects are constant. Nothing else except the object is
in the image. However, the distance from the object to the camera ranges from 1.5 to 4 feet
and there is often severe foreshortening and even deformation of the objects in the image.

7.3.2 Setting PADO up to Solve the Problem

In each of the two experiments in this section, the total population size was 1750 (i.e., 250*7).
Each point on each graph is an average of at least 60 independent runs. A total of 350 (50
from each of 7 classes) images were used for training and a separate set of 350 (50 from each
of 7 classes) images were withheld for testing afterwards.

The PSPs used in these experiments were as follows:

PSP-Point(a0,öi) returns the pixel intensity at the pixel/point (ao, «i).

PSP-Average(a0, «i, «2, «3) returns the average pixel intensity in the image region specified
by the rectangle with upper left corner (ao,ai) and lower right corner (02,03)-

7.3. NATURAL IMAGES 95

o
O

CO

1

0.9

PADO learning using Weight-Search orchestration on the Generic Signal Domain
1 1 ' ' ' ' , L 4. i- 4- 4- 4-4--

4.+ . ©"

,-+' ©■■*

,+ *■■*
0.8. ..©'

.©'
.©'

©
©'

0.7 .©

.©
©•

«' IRNP Weight-Search C60M36 ©
O.b - / IRNP Nearest-Neighbor C60M36 +

P
0.5,/

i i i i i I i

10 15 20 25
Generations

30 35 40

Figure 7.7: NP learning with IRNP using PADO Weight-Search and Nearest Neighbor orches-
trations CrossoverPercentChance=60% and MutationPercentChance-=36%.

PSP-Variance(ao, 01,02,03) returns the variance of the pixel intensities in image region
specified by the rectangle with upper left corner (c&o, «i) and lower right corner (ü2, 03).

PSP-Min(a0, Oi, a2,03) returns the lowest pixel intensity value in the image region specified
by the rectangle with upper left corner (oo,Oi) and lower right corner (02,03).

PSP-Max(a0,o1,02,03) returns the largest pixel intensity value in the image region speci-
fied by the rectangle with upper left corner (oo?oi) and lower right corner (02,03).

PSP-Diff(a0,01,02,03) returns the absolute difference between the average pixel intensity
above and below the diagonal line (arj,Oi) to (02,03) inside the bounding rectangle
with opposite corners (ao,oi) and («2,03).

7.3.3 The Results

In the following experiment, the generalization performance on a separate set of testing
images was recorded during each run and Figure 7.9 plots the mean of each of these values.

In this experiment, the performance of the PADO system was achieved through a PADO
orchestration strategy called Weight-Search orchestration (see Section 4.1.3 for details). Fig-
ure 7.9 shows the computational effort in generations required to reach a particular level of
test-set generalization performance for NP learning with and without IRNP.

The most important feature of Figure 7.9 is that NP learns more than twice as fast when
IRNP is applied to the recombination during evolution. Also notice that NP learns quite
well on this difficult image classification problem. Random guessing in this domain would
achieve only about 14.28% correct generalization performance.

In a second experiment from this same domain, the PADO system used Nearest-Neighbor
orchestration to classify the images. Figure 7.10 shows the computational effort in genera-
tions required to reach a particular level of performance.

96 CHAPTER 7. EXPERIMENTAL RESULTS

TRAIN

TEST

Figure 7.8: A random training and testing signal from each of the 7 classes in this classification
problem.

Again NP learns more than twice as fast when IRNP is applied. The difference between
using and not using IRNP in this experiment is a little less noticeable than in the previous
experiment from this domain. This is entirely attributable to the difference in orchestration
(since that is the only change from the first to the second experiment). Despite this small
difference, it is encouraging that IRNP is robust to this aspect of the system that incorporates
it. Also notice that NP learns even better than before on this difficult image classification
problem.

Finally, Figure 7.11 shows both IRNP based curves for the two experiments together so
that their performance level at generation 80 can be seen.

It is worth noting that the performance PADO achieves on any domain is related to the
particular orchestration strategy chosen. On this particular domain, PADO has achieved
generalization performance rates as high as 86%.

Another important point of discussion is the issue that while random guessing generates
a generalization percent performance of only 14.28%, Figure 7.11 shows that in generation 0
both orchestration strategies produce higher performance than this value. The explanation
for this is two fold. First, at the end of generation 0, some search has already been done;
hundreds of random programs have been generated and the best one from each discrimi-
nation pool has been selected and used in orchestration and testing. Second, particularly

7.4. ACOUSTIC SIGNALS 97

NP evolution in PADO in the Natural Image classification domain

.^■H^"

++W-H-<-+'
.+++++++' ■H-++-NH--H-I-H-

.+++' .+++++

NP -WITH- IRNP recombination
NP -WITHOUT- IRNP recombination

30 40 50
Generations

60 70 80

Figure 7.9: NP learning with and without IRNP using PADO Weight-Search orchestration.

NP evolution in PADO in the Natural Image classification domain

o
o

0.65

™ 0.55
o

CO

0.45

^++++++++++-1-+

NP -WITH- IRNP recombination
NP -WITHOUT- IRNP recombination

10 20 30 40 50
Generations

60 70 80

Figure 7.10: NP learning with and without IRNP using PADO Nearest Neighbor orchestration.

in the case of the nearest-neighbor orchestration strategy, while it helps for the individual
discrimination subproblems to be solved in order to solve the overall classification problem,
it is not necessary for this to happen for some non-random level of performance to be reached
through the learning that takes place in the nearest-neighbor orchestration strategy.

7.4 Acoustic Signals

7.4.1 Description of the Domain and Problem

The database used in this experiment contains 525 three second sound samples. These
are the raw wave forms at 20K Hertz with 8 bits per sample for about 500,000 bits per
training or testing sound. These sounds were taken from the SPIB ftp site at Rice University
(anonymous ftp to spib.rice.edu). This database has an appealing seven way clustering (70

98 CHAPTER 7. EXPERIMENTAL RESULTS

0.8

0.75

CD

1
0.7

0.65

O 0.6
'S

2

1
0.55

0.5

CO
0.45

|2
0.4

0.35

0.3

NP evolution in PADO in the Natural Image classification domain

,.oooo' i<K,oo«' .eoe°' .O0&OOOO' ,ooo«0O<*>'

+++! ++' .+++■*■'
++++' .+++ .+++++

+++++++++++++++++++

IRNP Nearest-Neighbor ■■«■■■
IRNP Weight-Search -t-

10 20 30 40
Generations

50 60 70 80

Figure 7.11: NP learning with IRNP using both PADO Nearest Neighbor and Weight-Search
orchestration.

from each class): the sound of a Buccanneer jet engine, the sound of a firing machine gun,
the sound of an M109 tank engine, the sound on the floor of a car factory, the sound in a
car production hall, the sound of a Volvo engine, and the sound of babble in an army mess
hall. There are many possible ways of subdividing this sound database; the classes chosen
for these experiments are typical of the sort of distinctions that might be of use in real
applications.

7.4.2 Setting PADO up to Solve the Problem

In each of the two experiments in this section, the total population size was 1750 (i.e., 250*7).
Each point on each graph is an average of at least 55 independent runs. A total of 245 (35
from each of 7 classes) images were used for training, and a separate set of 245 (35 from each
of 7 classes) images were withheld for testing afterwards.

The PSPs used in these experiments were as follows:

PSP-Point(a0, «i) returns the wave height at the moment in time specified by (a0*256+Oi).

PSP-Average(a0,Oi, a2,o3) returns the average wave height in the sound starting at time
(a0 * 256 + ax) and ending at time (a2 * 256 + a3). This PSP is useless for long time
periods since it's return value will be, by definition, the waveform's midline.

PSP-Variance(a0, «1,02,03) returns the variance of the wave height in the sound starting
at time (a0 * 256 + ai) and ending at time (a2 * 256 + 03).

PSP-Min(a0,01,02,03) returns the lowest wave height in the sound starting at time (a0 *
256 + ai) and ending at time (a2 * 256 + a3).

PSP-Max(a0,01, a2, a3) returns the largest wave height in the sound starting at time (a0 *
256 + ai) and ending at time (a2 * 256 + o3).

7.4. A CO USTIC SIGNALS 99

PSP-Difr(r/i,.f/1.a2,a3) is equivalent to ABS(PSP-Average(a0, au a0', ay) — PSP-Average(
(/,,■. ay. aj. «3)) where (ao'jöi') is the time midpoint between (an, öI) and (02,03).

Y.1'1

tlir-i- |>,

«■ I«i — — 111«,

UI'lH'l.lll

ill ill«' III

K'Mlll-.

tll.lt «If«

II|MI|| <ll

C1 i\ *-n t

ui'iii-i.ili

11- t li.tt. other than minor adjustments necessary to reflect the change in signal type,
1!.111 n-1 <-i ixed signal primitives are exactly the same as the PSPs used in the visual
,itii>n rN|><Timent discussed in Section 7.3. This was not done to demonstrate the
t\ of t II<'M> PSPs. On the contrary, this similarity in the experimental procedure was
lii'-ilili'jlit how little was done to tune NP or PADO in order to achieve the reported
PADO. using NP and IRNP, is able to make good use of these very simple PSPs

■ in »I wi'II focused to solving either of the domains in which they were applied.

tit nr— used for evolutionary learning (training of the PADO programs) was based
-ICHHV from returned confidence to the correct confidence for each training example.
hi- model of one class chosen per sound, if PADO just guessed, it could achieve a
/.ition performance of 1/7 (14.28%) correct5.

7.4.3 The Results

Fiuuiv 7.1'J shows the generalization percent correct PADO reaches on average on each
geticiiitioii. with and without IRNP. using the Weight-Search orchestration.

NP learning in PADO in an acoustic classification domain

— 0.65
<D

O 0.6 O
a? 0.55
0

CO
N 0.5
(0
a c 0.45
a
O)

0.4
w *!.
d> 0.35
K-

0.3

.^^H+f-HH-H-*"

^^wR5wmm^

NP -WITH- IRNP recombination
NP -WITHOUT- IRNP recombination

10 20 30 40
Generations

50 60 70 80

Figure 7.12: NP learning with and without IRNP using PADO Weight-Search orchestration.

Figure 7.13 shows the generalization percent correct PADO reaches on average on each
generation, with and without IRNP, using the Nearest-Neighbor orchestration.

Figure 7.14 shows the generalization percent correct PADO reaches on average on each
generation, with IRNP for both the Weight-Search and Nearest-Neighbor orchestration
strategies. Notice that in these experiments, for both orchestration strategies, IRNP learning
is almost three times as efficient as learning without it.

5Given that the training and test sets have an even number of signals from each class.

100 CHAPTER 7. EXPERIMENTAL RESULTS

NP learning in PADO in an acoustic classification domain

0.75

o
o

to 0.65

CD
C
CD
D)

0.55

0.5

|^+H^-H4++4+H4++++++++ I 11-
+++++++■

NP -WITH- IRNP recombination -e
NP -WITHOUT- IRNP recombination -+

10 20 30 40 50 60 70 80
Generations

Figure 7.13: NP learning with and without IRNP using PADO Nearest Neighbor orchestration.

NP learning in PADO in an acoustic classification domain
0.8

CD
0.75

o 0.7
Ü

5^ 0.65
c o 0.6
to

CO
0.55

Q 0.5
0)
O) 0.45
CD co 0.4
CO

H 0.35

0.3

IRNP Nearest-Neighbor -■«-■■
IRNP Weight-Search ■•+•■

10 20 30 40 50
Generations

60 70 80

Figure 7.14: NP learning with IRNP using both PADO Nearest-Neighbor and Weight-Search
orchestration.

7.5 Acoustic Signals Revisited

One of the most important implied aspects of this thesis is that, given more time to examine
each signal the NP programs will be able to improve their evolved performance. If NP
programs are really looping and foveating on the input signals, then increasing the amount
of time (i.e., maximum timestep threshold, T) should often increase the evolved program
performance. Having noted this, let us revisit the acoustic signal classification problem
described in the previous section. As in the rest of this thesis, the experimental results in
the previous section were achieved with an NP timestep threshold of 10 timesteps. In this
section, we will double this value to a timestep threshold of T — 20 timesteps to see how that
change affects both the efficiency and, more importantly, the effectiveness of NP learning
within PADO.

Since this thesis has claimed that there is an advantage to be gained from the addition
of iteration and/or recursion, a demonstration that increasing the time available to each

7.5. ACOUSTIC SIGNALS REVISITED 101

program (without increasing the number of degrees of freedom in the model being learned6)
will strengthen this argument. This is a critical point:

The NP programs evolving in this section have the exact same number of
degrees of freedom as in the previous section. Programs in all ways similar to
those in the previous section are simply allowed to "think longer" about the signal
in question. Therefore, improved performance in this experiment demonstrates
that NP programs are making use of the looping/foveating aspects of the NP
programming language.

7.5.1 Description of the Domain and Problem

The domain and problem for this set of experiments is in every detail identical to the domain
and problem described in the previous section.

7.5.2 Setting PADO up to Solve the Problem

In setting up PADO to solve this acoustic signal classification problem, every aspect was
left exactly as in the previous section with a single exception. This exception was that the
timestep threshold (that maximum number of timesteps after which the response is extracted
from each NP program) was increased from 10 to 20.

7.5.3 The Results

Two facts are worth noting. The first is that doubling the timestep threshold almost7 doubles
the amount of time it takes PADO to complete a generation. Although this does not have
much bearing on the effectiveness graphs below (Figures 7.17 and 7.18), the efficiency graphs
do not reflect this increased time it takes to compute a generation (Figures 7.15 and 7.16).
Each point in each of these figures is an average over at least 60 independent trials.

The second fact is that while it takes more time to compute the fitness of each particular
program on each particular signal, the same amount of learning is done with two different
timestep thresholds. Said in another way, the additional computation time is spent because
the fitness takes twice as long to measure, not because twice as many decisions are made
with the same information. This is significant by itself, but more significant still when
we remember that learning to take advantage of this additional time available to each NP
program must be done using the same amount of learning (i.e., the same number of search
steps). This means, that in some sense, this test would have been more fair if more learning
(and therefore more computation time) had been given for the experiments in this section,
not less computation time as the computation time note in the previous paragraph seems to
suggest.

6In Tree-GP, the standard method for giving a function more "time" to think about an input is to allow
for larger functions to be created, but this has the obvious impact of increasing the number of degrees of
freedom in the model being learned which makes "memorizing the training data" easier.

7There are a number of small costs associated with running the system that do not increase when each
program's running time is doubled.

102 CHAPTER 7. EXPERIMENTAL RESULTS

Figures 7.15 and 7.16 show the generalization percent correct PADO reaches on aver-
age on each generation with IRNP using this enlarged timestep threshold, Weight-Search
orchestration and Nearest-Neighbor orchestration respectively.

NP learning in PADO in an acoustic classification domain

o s
0.7

0.65
o
-5 0.6
c o
15

<D

0.55

0.5

ffi 0.45

CO 0.4

0) 0.35

0.3

of? ^A***

If IRNP and Weight-Search and Timestep Threshold =
- ff IRNP and Weight-Search and Timestep Threshold =

+4+4-

= 20
= 10

f++++++-H-

-H

/
"

>_

1 1 1 -I 1 1 i

-

10 20 30 40
Generations

50 60 70 80

Figure 7.15: NP learning with IRNP using PADO Weight-Search orchestration and Timestep
Threshold = 10 and 20.

NP learning in PADO in an acoustic classification domain

o
ü

o
CO

■Jo a
H

0.75

0.7

0.65

0.6

0.55

0.5

0.45

T~~~^^ r +.++++++++ H4-H-++++++ 4-1 II I I l-H*

0«

f> 4,++^

/ #'

IRNP Nearest-Neighbor Timestep Threshold = 20 ■■<»-•
IRNP Nearest-Neighbor Timestep Threshold = 10 ■■+---

10 20 30 40
Generations

50 60 70 80

Figure 7.16: NP learning with IRNP using PADO Nearest Neighbor orchestration and Timestep
Threshold = 10 and 20.

Figures 7.17 and 7.18 show the generalization percent correct PADO reaches on average on
each generation, with IRNP for both the Weight-Search and Nearest-Neighbor orchestration
strategies respectively, using this enlarged timestep threshold. In these two graphs the
data has been redisplayed so that the eventual effectiveness of learning with the additional

timesteps can be seen.
The results of these experiment are quite exciting. IRNP learning with a timestep thresh-

old of T = 20 is three times as efficient as learning under the same conditions with T = 10.
Notice that this means that IRNP learning with T = 20 actually accomplished the same
amount of learning as does NP learning without IRNP using T - 10 using only about 13%
of the effort!

7.5. ACOUSTIC SIGNALS REVISITED 103

NP learning in PADO in an acoustic classification domain

0.75

^ 0.7
o
O 065
f
I 0.6

*4 055
<C

? 0.5

& 0 45

<» 04
«5

0.35

0.3

+ 111 + "Ill I-+++++++

IRNP and Weight-Search and Timestep Threshold = 20
IRNP and Weight-Search and Timestep Threshold = 10

30 40 50
Generations

60 70 80 0 10 20

Figure 7.17: \l' learning with IRNP using Weight-Search orchestration and different timestep
ilir.--ln.M-.

0.85

0.45

NP learning in PADO in an acoustic classification domain

T3
<u 0.8 -
o «4*«*°*
O 0.75 " X>^ c o 0.7

/ +++
CD
N 0.65 -9+
a c
CD

0.6 1 □)
CD

en 0.55 (>
CO

0.5
1-

^^^+++^+^^^+^+^+++++^^
++++++-H-+4

IRNP Nearest-Neighbor and Timestep Threshold = 20 o
IRNP Nearest-Neighbor and Timestep Threshold = 10 -■+-■■

10 20 30 40 50
Generations

60 70 80

Figure 7.18: NP learning with IRNP using Nearest Neighbor orchestration and different timestep
thresholds.

This phenomenon - increasing timestep threshold leading to increased generalization
performance - may be asymptotic; above a certain amount of time, increasing NP's time
threshold may not yield higher performance and near that certain amount of time, increasing
the time threshold may have only a very slight positive impact on the performance. An
interesting and important piece of future work is the further investigation of exactly how
evolved NP programs use these looping/foveating properties of the NP language.

104 CHAPTER 7. EXPERIMENTAL RESULTS

7.6 Protein Identification

7.6.1 Description of the Domain and Problem

Proteins provide the bulk of biological structure and biological functionality [Stryer, 1995].
There are two very different views of a protein: primary structure and tertiary structure8.
In both cases, the building blocks for all proteins in all living organisms are amino acids.
With exceedingly few exceptions, all proteins on earth are built from 20 amino acids that
are symbolized by the 20 characters A, B, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W, and Y.

The primary structure of a protein is defined by the strongest bonds in the protein. This
means that, by ignoring most of the interactions between the building blocks, the protein can
be described as a single dimensional list of those 20 characters. This linear, 1-D structure
never appears as such in nature; there are always 3-D folds and important secondary bonds.
However, this listing of the amino acids is an extremely convenient and useful simplification
of the protein structure. The tertiary structure is the 3-dimensional structure of the protein.
In nature the chemical bonds in a protein cause it to fold up into something much more like
a ball than a string.

As an example, let us look at the primary and tertiary structures for the protein BPTI
(bovine pancreatic trypsin inhibitor). The primary structure for BPTI is shown in Table 7.4.
The tertiary structure for BPTI is shown in Figure 7.19.

RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAE
DCMRTCGGA

Table 7.4: The primary (1-D) representation for the protein BPTI: bovine pancreatic trypsin
inhibitor.

It turns out that the function of a protein is almost entirely determined by its 3-
dimensional structure. There is also a very strong correlation between the 1-dimensional
representation of a protein and its 3-dimensional structure. This means that, by transitivity,
the function of a protein (a primary subject of interest in biology) is largely determined by the
1-dimensional list of amino acids that describe the protein. Unfortunately, the two mappings
just alluded to, from 1-D to 3-D and from 3-D to function, are both poorly understood.9 As
a result, computational biology has focused quite a bit of its attention on finding approxi-
mations to these mappings for different subsets of the protein domain. This process is often
called the protein folding problem in computational biology.

Finding algorithms for computing the 3-D structure and function of a protein based
on the 1-D structure of that protein seems at first like an odd waste of time. The reason
this problem exists is because biologists can record the primary structure of a protein with
immensely less effort and expense than recording it's 3-D structure or function. The process
of recording a protein's primary structure is called protein sequencing.

8Tertiary structure is often called conformation.
9It is certainly the case that the mapping from the tertiary structure to the function of the protein is

better understood than the 1-D to 3-D mapping being attempted in this experiment.

7.6. PROTEIN IDENTIFICATION 105

Figure 7.19: A rendered image of the 3D structure of the protein BPTI: bovine pancreatic trypsin
inhibitor.

Because of this bias towards sequencing proteins and then trying to "guess" their 3-D
structure and function from those sequences, the number of unlabeled protein sequences is
increasing exponentially each year. The SWISS-PROT database [Bairoch and Boeckmann,
1991] is an example site at which such unlabeled proteins are placed. The following experi-
ment is drawn from labeled protein sequences from that database.

Finding the 3-D structure and function of a sequenced protein is the goal, but either
of those attributes could be described well below the level of detail necessary for a trained
biologist to understand the basic nature, shape, and function of the protein. There are
a range of mid-level descriptions of the 3-D structure that correspond well to particular
functionality among most proteins. The specific experiment this section describes attempts
to classify proteins into one of five different classes, where each class is such a useful, mid-
level description of both 3-D structure and functionality. These five classes are: extracellular,
intracellular, nuclear, membrane integral, and membrane anchored.

In 1997, a report appeared in the Journal of Molecular Biology that described an al-
gorithm for predicting which of the five aforementioned classes an unlabeled protein falls
into [Cedano et al., 1997]. This algorithm, based on the statistical occurrences of the dif-
ferent amino acids, was reportedly trained on 1000 labeled proteins (proteins for which the
5-way classification was known) before it correctly identified the class for 76% of 200 "unla-
beled" proteins (i.e. labels withheld until after testing). The goal of this experiment was to
apply PADO to this problem using the same 1000 labeled proteins as a training set and the
same 200 "unlabeled" proteins as a testing set.

106 CHAPTER 7. EXPERIMENTAL RESULTS

7.6.2 Setting PADO up to Solve the Problem

As with all PADO experiments, the user must provide the training and testing signals. In
this case, each signal to be classified is a string of characters representing the amino acid
primary structure of the protein to be classified. The shortest signal in the training set is
17 characters (amino acids) long and the longest signal in the training set is 4911 characters
long. In addition, the user must provide PADO parameterized signal primitives for examining
the signal. The following PSPs were provided to PADO during these experiments:

PSP-Hydro(a0,ßi) returns the amount of hydrophobicy/aliphaticy of the amino acids in
the interval specified by [a0,ai]. There is wide disagreement about how this sort of
thing should be measured. Appendix D.l gives the hydrophobicity values chosen for

this experiment.

PSP-Weight(a0,ai) returns the average weight (measured in daltons) of the specified in-
terval [a0,oi]. These values are agreed upon and the individual values to be summed
are shown in Appendix D.2.

PSP-Charged(a0, «i) returns the percentage of charged (+ AND -) amino acids that exist
in the specified interval [a0,ai]. The charged amino acids are largely, but not entirely
agreed upon. Appendix D.3 shows how this PSP is calculated.

PSP-Occurrence(ao) returns the percentage of amino acid a0 that appears in the signal
to be classified.

PSP-VdWVolume(a0, ai) returns the average Van der Waals Volume in the interval [a0, ai].
The volume contribution of each amino acid is not well agreed upon. Van der Waals
Volume is one of the fairly standard measures for the amount of space taken up by the
different amino acids. Appendix D.4 gives the details on how this PSP is computed.

It is important to note that there is massive disagreement within biology about all of
these "views" of a protein. For example, there is no consensus either about the exact relation
of hydrophobicity and transmembrane proteins (class 4: membrane integral) or about the
exact relation of the individual amino acids to the hydrophobicity of the protein. This means
that the PSPs provided to PADO are certainly inferior to those that could have been created
by a trained biologist studying this problem (e.g., [Cedano et ai, 1997]). It is exciting to see
how well PADO does even under these circumstances, and it is very likely that under the
guidance of a biologist PADO's performance in this domain would improve further.

In addition, these are by no means the best parameterized signal primitives to create
either in terms of how they are parameterized (simply specifying sub-segments of the 1-D
structure) or in terms of the general features to examine (e.g., hydrophobicity). The former
was chosen because it is simple and clear, and the latter was chosen because these are the
attributes of amino acids that get the most attention on the world wide web and so have the
most information readily available.

7.6. PROTEIN IDENTIFICATION 107

7.6.3 The Results

In ihr pM-vioii» several sections, the presentation of results focused on how much compu-
tiitiini.il <-lii»!t need be put in to achieve a particular level of generalization performance
on in-, nnii. I liis section will, in contrast, pick one highly successful set of NP programs
tli.it wi'n- lr.itin'*! together and orchestrated to achieve the results reported.10 This set of
|iK>'jt.iiii- i- ptr-cnted in Tables 7.5, 7.6, 7.7, 7.8, and 7.9.

function Inputs Output Arcs Node CreditScore Function Inputs Output Arcs
~ig-Len 4 572 44; 45i 5 0.059578 250 1 440

596 2 652 10 0.116111 Sig-Len 3 580 57i
■' ■ - 078 1 472 15 0.116111 Sig-Len 1 500

377 1 610 18 0.011894 250 0 602

'■'■■ .-'ig-Len 3 6O3 61i 63] 632 633 22 0.011435 377 1 690 60)
. ; • ■ . Sig-Len 0 553 49! 490 480 25 0.051476 187 2 59Q 520 50j
 187 0 65o 40 0.011342 165 0 563

t 752 4 570 44 0.177437 Split 3 47x 452 56!
1" ' " * t »utput 4 54 j 550 470 50 0.154348 Split 4 540 593

■ 1 ••• MULT 4 573 55 0.114990 Output 4 Six 512 513 560

: -11- ADD 4 54o 55j 55, 57 0.056302 ADD 4 542 530 • l-.-l SUB 4 47o 52j 61 0.066143 DIV 2 522 562 523

!• . P ADD 4 600 65 0.010648 SUB 4 65f) 65! 63f)

Table 7.5: A learned NP program to discriminate protein class 1 from all other classes.

i '■ Function Inputs Output Arcs Node CreditScore Function Inputs Output Arcs
.. up. :■• ■ 238 0 34, 2 0.017864 245 1 43i 50! 70!
■ ' '(i-,-,H 838 3 420 700 430 662 11 0.066670 030 2 73! 44! 621

11 11 .Vi'.i'^X, 030 2 51, 37, 17 0.305474 915 3 65j 423 71i
1 • (' (ijo '.'•.] 169 2 710 680 24 0.125573 Sig-Len 0 532 ^3\ 362 363 37ß
-•> 0 0(.r,'.(iS 169 1 37o 732 34 0.262321 ADD 4 350 74j

0 2C.:'.3v7 Output 4 '-•0 36 0.262287 SUB 4 35i 46i 340 353

-1- 0 .'06720 Output 4 42, 46 0.018663 PSP-Weight 3 342 343

',1 0.307870 PSP-Hydro 2 42, 41j 530 53 0.300901 SUB 4 510 352 ',', 0.017073 PSP-Occur 4 360 550 68 0.030845 SUB 2 38! 533 590 58!
(/' 0.016962 MULT 1 690 361 641 70 0.017931 PSP-VdW 3 460

7.'. 0.263357 ADD 3 681 77i

Table 7.6: A learned NP program to discriminate protein class 2 from all other classes.

Node CreditScore Function Inputs Output Arcs Node CreditScore Function Inputs Output Arcs
2 0.210147 Sig-Len 2 450 6O3 3 0.215147 Sig-Len 3 460 49!
5 0.210147 Sig-Len 4 510 78x 7 0.206148 592 1 43i

13 0.210147 Sig-Len 2 62, 14 0.047335 603 1 630

15 0.244704 CLOCK 3 6I1 64i 16 0.250192 Sig-Len 1 670 672

19 0.251061 CLOCK 3 610 62! 620 692 20 0.210147 Sig-Len 3 652 63i
26 0.215120 491 2 730 463 27 0.151236 840 1 422 512 550

29 0.210147 Sig-Len 3 420 54i 31 0.083166 CLOCK 4 55i 520

34 0.206656 CLOCK 1 430 35 0.011626 371 2 623 73i 423

37 0.094720 304 2 570 39 0.210147 Sig-Len 1 70i 700

41 0.156044 PSP-Hydro 3 502 740 503 42 0.152511 MULT 4 410 74!
43 0.215092 PSP-Weight 2 780 46i 46 0.215997 Output 4 501
51 0.152053 Output 4 41i 52 0.100396 PSP-Occur 1 770

53 0.149943 PSP-Weight 2 540 720 530 54 0.156064 PSP-Weight 2 500

57 0.143708 SUB 2 53! 58 0.177966 PSP-Weight 3 42i 590

59 0.214836 PSP-Occur 2 453 462 680 61 0.251127 PSP-Hydro 2 60g 673 58i 690

62 0.163411 ADD 4 47i 76! 63 0.140974 Split 2 77x 602

64 0.249790 PSP-Hydro 2 660 66 0.250128 MULT 1 67X

67 0.251180 Output 4 472 69J 69 0.251889 Output 3 6O1
70 0.151416 PSP-Hydro 3 473 51i 73 0.160914 MULT 2 760 440

74 0.096191 PSP-Hydro 3 57j 76 0.244135 SUB 2 640 580

77 0.151435 ADD 2 Sl3

Table 7.7: A learned NP program to discriminate protein class 3 from all other classes.

Notice that in all five shown learned NP programs there are nodes "missing" (e.g., in
Table 7.6, nodes 71 and 72 are not listed). This is because these programs have been reduced
using the Credit-Blame map so that only the effective parts of the program are shown. The

10This alternate presentation is done because it corresponds best with the reporting method of the two
research works against which the experimental results of this section are compared.

108 CHAPTER 7. EXPERIMENTAL RESULTS

Node CreditScore Function Inputs Output Arcs Node CreditScore Function Inputs Output Arcs
0 0.445867 328 3 200 1 0.539863 100 1 220 28i
3 0.545543 100 1 330 310 4 0.306296 662 4 390

5 0.552905 100 1 420 48j 7 0.544190 235 2 47,
8 0.545530 942 0 «0 9 0.000043 CLOCK 3 25i 512

10 0.000028 624 1 252 11 0.281462 235 0 482

12 0.016601 100 1 290 24, S2j 14 0.000935 328 1 54! 342 510

17 0.000329 870 2 242 233 18 0.000050 662 1 51j 232

19 0.552736 Output 4 19j 20 0.538241 PSP-Occur 4 22j
21 0.552719 IFTE 4 190 43j 22 0.552368 PSP-Hydro 3 210 23i 300 283

24 0.183872 MULT 4 280 25 0.016665 MULT 3 520

28 0.552368 IFTE 4 192 193 21j 212 213 31 0.543903 PSP-Occur 3 33i
32 0.560383 Output 4 400 33 0.558179 PSP-Hydro 3 320 39, 350

34 0.558106 MULT 3 323 340 430 35 0.551539 ADD 2 463 282

39 0.558036 DIV 3 32j 40 0.551243 PSP-Occur 4 «I
41 0.567945 Output 4 380 42 0.565711 PSP-Hydro 3 410 483

43 0.516104 MULT 3 34i 44j 480 47 0.567799 PSP-Weight 2 322 250 38,
48 0.567872 IFTE 4 382 383 41, 412 413 50 0.364228 ADD 4 50j 500 35J
51 0.025913 MULT 3 243 503 52 0.025138 ADD 2 502

54 0.000864 MULT 2 540 432

Table 7.8: A learned NP program to discriminate protein class 4 from all other classes.

Node CreditScore Function Inputs Output Arcs
0 0.221809 653 0 200 462

4 0.336564 688 2 34, 21n 26(1
5 0.271669 103 1 38r,

10 0.338315 544 1 34(1
12 0.003878 257 2 44(1
16 0.358478 308 1 42, 39n 41,
17 0.086478 Sig-Len 4 183 322

19 0.292845 PSP-Charge 2 22n 19(1
20 0.233774 PSP-Charge 3 20i 18(1
21 0.276418 MULT 3 19,
22 0.293530 Output 2 30n 31n 27(1 21,
30 0.294689 Output 4 18, 28,
33 0.293492 PSP-Charge 2 3O3
34 0.356565 PSP-Charge 2 35n 36n 41(1
35 0.272933 Output 3 182

36 0.357400 Output 2 39i 36, «n
38 0.272036 MULT 1 35,
39 0.366780 PSP-Hydro 3 40i 44, 33n

41 0.293455 PSP-Charge 2 30i 30, 31, 312 313

42 0.292916 PSP-Charge 2 21? 29(1 35, 22! 29i
44 0.277030 MULT 2 33,

Table 7.9: A learned NP program to discriminate protein class 5 from all other classes.

same has been done with the arcs. Only arcs that actually affect the program are shown.
This has reduced the complexity of the displayed programs by more than a factor two. While
this is not a focus of this thesis, one of our long term goals is to aid not only the learning of
complex programs, but also the understandability of those learned programs after they have
been learned. The complexity reduction demonstrated here is a first step in this exciting
area for future work.

The first piece of good news is that, under the Nearest-Neighbor orchestration method,
this set of learned NP programs generalizes to the test set with 69% accuracy! This is
7% lower than the results recently reported by Cedano et «/., but to come even close to
a publishable performance level in a problem acknowledged by the Journal of Molecular
Biology to be difficult and important is a victory for machine learning. The fact that very
little knowledge of the problem was input into the system (I am, after all, not a biologist)
is some evidence that a biologist guiding PADO could have achieved results comparable to
Cedano et al. The learned PADO system of NP programs shown and discussed in this section
was learned using IRNP. It is worth noting that the highest accuracy PADO system developed
without IRNP only generalized with 63% accuracy to the test-set. This 6% generalization
improvement due to IRNP is significant in this domain a performance gap of a similar size is

7.7. HAND-HELD IMAGES 109

all that separates the program created by PADO from the results published in the Journal
of Molecular Biology in 1997, as cited.

Soon after Cedano's 1997 paper came out, [Koza et a/., 1998] reported on a GP attempt
to tackle a similar problem using the same training and testing data. This work reported on
the problem of discriminating class 4, the transmembrane domain, from the other 4 classes in
this same domain. After extensive evolution on an enormous population (500,000 functions),
a function was evolved that generalized to the test set with an accuracy of 89%. As a further
study of the NP programs shown above, the learned NP program shown in Table 7.8 was
tested on its ability to discriminate amino acid sequences belonging to class 4 from amino
acid sequences from the other four classes. That NP program generalized to the test set
with an 86% accuracy, which is impressive given that the NP program was learned in a
population of 250, not 500,000.

7.7 Hand-held Images

7.7.1 Description of the Domain and Problem

Elements in this experiment are 256x256 real video images with 256 level of grey. This
domain has seven classes: Bear, Long flute, Pan flute, Thermos, Book, Racket and Other.
The class Other is a collection of images which are empty or show a hand holding some
object (like a cup or a ball) that is not one of the other six classes. All pictures are taken
against a variety of solid colored backgrounds and contain part of a hand and arm. The
hand holds one of the objects, often partially occluding it. The location and rotation of the
object is only constrained so that the object is completely in the image. The lighting varies
dramatically in intensity and position. The distance from the object to the camera ranges
from 2.5 to 3.5 feet. The objects are never severely foreshortened. See Figure 7.20 for a
sample training and testing image from each class.

7.7.2 Setting PADO up to Solve the Problem

In each of the two experiments in this section, the total population size was 1750 (i.e., 250*7).
Each point on each graph is an average of at least 65 independent runs. A total of 105 (15
from each of 7 classes) images were used for training and a separate set of 105 (15 from each
of 7 classes) images were withheld for testing afterwards. Notice that this is less than a third
as many training examples as was used in the experiment Section 7.3.

The PSPs used in these experiments were as follows:

PSP-Point(ao,«i) returns the pixel intensity at the pixel/point (ao,ßi).

PSP-Average(a0, «i, «2, ^3) returns the average pixel intensity in the image region specified
by the rectangle with upper left corner (öo5ßi) and lower right corner (02,03).

PSP-Variance(ao, ai,a2,a3) returns the variance of the pixel intensities in image region
specified by the rectangle with upper left corner (ao, ai) and lower right corner (02,03).

110 CHAPTER 7. EXPERIMENTAL RESULTS

TRAIN

i: :■;■■ }&

TEST «Si Wm

■t^...^. ■ MEE* /

£* I i

SMS»

Figure 7.20: Random training and testing signals from the 7 classes in this domain.

PSP-Min(a0, ai, «2, a3) returns the lowest pixel intensity value in the image region specified
by the rectangle with upper left corner (ao,«i) and lower right corner (02,03)-

PSP-Max(a0,01,02,03) returns the largest pixel intensity value in the image region speci-
fied by the rectangle with upper left corner (öO,«I) and lower right corner (02,03)-

PSP-Diff(a0,01,02,03) returns the absolute different between the average pixel intensity
above and below the diagonal line (a0,«i) to (02,03) inside the bounding rectangle
with opposite corners (ao,«i) and (02,03).

Notice that these are identical to the PSPs used in experiment Section 7.3.

7.7.3 The Results

Figure 7.21 plots the mean generalization performance on a separate set of testing images for
each successive generation. Both curves in Figure 7.21 use IRNP; the difference in the curves
is due to the use of the same pair of orchestration techniques used in the other experiments:
Weight-Search and Nearest-Neighbor orchestration.

The most obvious feature of the curves in Figure 7.21 is that PADO's performance on this
domain is significantly less good than in the other image domain presented in Section 7.3.

7.8. EXPERIMENTS SUMMARY 111

O

0.55

0.5

0 45

04

035

03 -

NP evolution in PADO in the Hand-help Images classification domain

0.25

öo^°'
^ooooo'

,000000<X>00' .ooooo^«*»'*»'

1 1 1 1

^■•H-+'
.+++++■

++++-H-+++-H +++++++++
^++++++++++++

.^
IRNP Nearest-Neighbor o

IRNP Weight-Search ■+••

10 20 30 40 50 60
Test-Set generalization performance: Percentage Correct

70 80

Figure 7.21: Hand-held Images: NP learning with IRNP using both PADO Nearest Neighbor
and Weight-Search orchestration.

Mute s'mnilicantly, PADO performs less well in this domain than previous incarnations of
PADO haw done on this exact same domain [Teller and Veloso, 1997]. Both of these phe-
nomena can be explained by the same underlying cause: scarcity of training data.

As noted in Section 7.7.1, there are very few training examples given to PADO. Learning
the difference between these sort of video images is a very difficult problem. Given the PSPs
PADO is given (that clearly do not include any domain specific information), the problem
is much harder. Learning to discriminate these classes from each other is yet again harder
with only 15 examples from each class to learn from (compared with 50 examples from each
class in Section 7.3). In [Teller and Veloso, 1997], this problem was addressed by adding to
PADO a whole regime for adding noise to video images. This regime effectively increased
the number of available training examples from each class from 15 to about 75. This increase
translated directly into the approximately 10% performance advantage that this older version
of PADO exhibited over the thesis instantiation of PADO. Still it is encouraging to see that
despite all of these difficulties, PADO still manages to find a general classification system
well above the 14.28% guess a class at random would achieve.

7.8 Experiments Summary

The following general conclusions can be drawn from the empirical evidence presented in
this chapter:

• PADO was run successfully on a variety of different signals:

— Generic signal domain
- Generic signal domain artificially generated - four classes.

— Natural Images I
- Natural Images I for visual object recognition - seven classes.

112 CHAPTER 7. EXPERIMENTAL RESULTS

— Acoustic Signals
- Acoustic signals of army noises for classification - seven classes.

— Amino-Acid Sequences
- Protein subsequence identification - five classes.

— Natural Images II
- Natural Images II for recognition of hand-held objects - seven classes.

• IRNP increases the learning rate across domains.

• NP programs perform better when given more time to examine the signals.

• The orchestration method employed has a significant impact on PADO's performance.

• IRNP is not significantly sensitive to the orchestration method employed.

• PADO is not significantly sensitive to its learning parameters.

Chapter 8

Related Work

We now situate our work on PADO, Neural Programming, and Internal Reinforcement within
the larger context of machine learning in AI. While it is nearly impossible to read everything
that has been written on a field the size of algorithm evolution, we believe that PADO, NP,
and IRNP represent important original contributions to the field. Therefore, this chapter
focuses on the similarity between our work and other research programs rather than their
differences.

In general, mechanisms already exist with at least some of the stated goals of this research
program. The most popular mechanism with many of the same goals as PADO is Artificial
Neural Networks (ANNs). ANNs do take signals as input and produce a much smaller
signal (interpretable as a symbol) as output (e.g., [Pomerleau, 1992, Intrator et al., 1995,
Sebald et al., 1991]). To some extent the ANN mechanism works independent of the signal
type, as long as proper pre-processing of the signal and ANN parameter tuning is done.
However, it is also fair to say that ANNs pay a price for increased signal size which is always
linear and often closer to quadratic in the input size increase. This price is not only in
the time it takes to train the extra weights introduced by increasing input size, but more
importantly, this increased number of degrees of freedom means that overfitting happens
early, unless significantly more training data is provided. This relationship (larger input
signals —Y larger required training set sizes) forces a fairly low upper-bound on the size of
signal elements that can currently be given to an ANN tractably. In addition, ANNs are
committed to the specific real-valued representation that drives their learning process. This
means that they can accept any signal type that can be preprocessed to fit into this input
paradigm. This is another restriction that the ANN process brings upon itself. PADO seeks
to overcome, among others, these two obstacles: sensitivity to signal size, and static use of
domain knowledge (pre-processing).

Because PADO aims to contribute both to algorithm evolution in machine learning and
to automatic signal understanding in the signal processing field, the next two subsections
will give background on those two areas of research.

113

114 CHAPTER 8. RELATED WORK

8.1 Algorithm Evolution

Neural Programming is an extension of the genetic programming paradigm. Genetic pro-
gramming (GP) is a term for the automatic generation of programs by means of natural
selection. Genetic programming as a term began with [Koza, 1992], but the origins of algo-
rithm evolution are much older. As long back as the 1960's, work like [Fogel et a/., 1966] was
laying the ground work for what genetic programming has become today. [Cramer, 1985]
was the work that formed the bridge from traditional GA to the field that has since become
genetic programming.

The NP and IRNP approaches are used, in the context of our work, for signal classifica-
tion problems. Genetic programming has been applied to a number of visual and acoustic
classification problems. In most of these cases, this work has looked at small images (e.g.,
font bitmaps [Andre, 1994, Koza, 1994]). In the cases where larger signals are examined,
GP is almost always used as an aid, not the actual program that examines the signal di-
rectly (e.g., [Nguyen and Huang, 1994, Tackett, 1993, Daida, 1996]). Time series prediction
has also been the topic of some GP research, but again, successful only in specific cases
(e.g., [Oakley, 1994]). The use of arbitrary memory was introduced into genetic programming
in [Teller, 1994a] and later papers have examined aspects of memory and data structures in
evolved programs (e.g., [Langdon, 1995, Andre, 1995, Andre and Teller, 1996, Brave, 1996a,
Langdon, 1996]). [Teller, 1994b] demonstrated that GP, with a few paradigmatic addi-
tions, was Turing complete. Some research has been done on recursion and looping in GP
(e.g., [Kinnear, Jr., 1993, Brave, 1996c, Langdon, 1995]), but how to tractably evolve com-
plex programs with iteration and/or recursion and extensive, effective memory use is still
very much an open question.

GP is by no means the only machine learning method that employs evolution as a learning
model. Of the most immediate relation to this research, Evolutionary Programming (EP)
was first described as a method for learning finite state machines (FSMs) [Fogel et a/., 1966].
More recently EP has, as a field, moved to evolving vectors of real numbers. Some work in
EP still is related to aspects of PADO and the NP representation, and IRNP. [Fogel et c/.,
1995] is a good example of this work. In [Fogel et al., 1995], finite state machines are evolved
and used to predict time series data. FSMs are topologically identical to NP programs.
What happens at each node though is entirely different. FSMs are flow of control and the
"computation" done at each node is simply to decide which node (state) to pass- control to
next based on the next input symbol. FSMs can also be described as data-flow machines,
but the effect is the same. [Fogel et a/., 1995] is notable in that a self-adaptation strategy
is used to try to improve the mutation operator acting on these FSMs which has a similar
goal to that of IRNP, though the method for solving the problem is very different.

Both because of its representational similarities and because of its computational class
equivalence (i.e., both are Turing complete representations), recurrent ANNs (e.g., [Rumel-
hart et al, 1986]) are also of relevance to the NP and IRNP research.

8.2. SIGNAL UNDERSTANDING 115

8.2 Signal Understanding

Signal Understanding1 is a large field and certainly cannot even be summarized here. There
are a number of related fields all of which, to some extent, can be thought of as address-
ing the signal understanding problem: Computer Vision, Machine Learning, Digital Signal
Processing, Pattern Recognition, etc. Each has been applied to some of the sorts of signal
understanding problems addressed in this thesis.

From an AI perspective, the signal understanding field can be divided into two subfields:
human solutions and machine learning. The eventual goal of machine learning in signal
understanding is both to improve the performance of human created solutions as well as to
act as a labor saving device where human created solutions are too expensive to obtain or
are needed in situations in which humans cannot participate. The state of the art is far from
but moving towards this goal. This thesis avoids the topic of human coded solutions because
it is not the primary goal of this thesis to surpass human coded solutions in important signal
processing problems. In fact there is a synergistic, not competitive, relationship between
this work and the main stream of fields such as computer vision.

There are some signal-specific approaches to solving the signal understanding problem.
For example: computer vision. The bulk of the lessons learned in computer vision are
not transferable to other signal understanding areas such as the deciphering of acoustic
information. Generally, such signal-specific fields are fields in which the understanding about
that specific signal type is driven by the innovations of the researchers.

On the other end of the spectrum is machine learning. A good part of the effort in machine
learning is aimed at attacking one part or another of the signal understanding problem. In
machine learning signal understanding the primary goal is not to increase understanding
about the signal type, but for the researchers to innovate in the machine learning techniques
so that the machine learning systems themselves can learn more about the signals in question.
At this level of description, the work of this thesis falls on this, the ML, end of the spectrum.

Another distinction in the signal understanding field is between identifying the important
symbols associated with a particular symbol (often called Pattern Recognition) and the
problem of actually locating, specifying, or otherwise annotating specific aspects within a
signal (often called Object Recognition in the computer vision field). In this thesis, the
applications of PADO focus on classification of the whole signals rather than dissecting
them, but PADO could as easily be applied to these related "symbol location" problems.

Within machine learning, ANNs have enjoyed the largest share of success stories in both
visual and acoustic signal domains (certainly the two most important and popular signal
domains). It would require the entirety of a thesis this length to adequately summarize a topic
as large as ANN activity in visual and acoustic domains in the last 10 years. Two of the visual
areas in which ANNs have appropriately received the most attention are in the autonomous
road following domain (e.g., [Pomerleau, 1992]) and the face detection and/or recognition
domain (e.g., [Hancock, 1990, Intrator et ah, 1995, Viola, 1993, Turk and Pentland, 1991,

1 Signal understanding is a potentially over-general term which is used on purpose in this thesis. Signal
classification is certainly a major form of signal understanding. However, if, for example, we map an image
to a continuous variable (e.g., temperature) then we are doing signal-to-symbol mapping without a finite set
of classes. PADO, in its final form, is intended to be able to capture many types of signal understanding.

116 CHAPTER 8. RELATED WORK

Rowley et al., 1995, Sung and Poggio., 1994]). In the general acoustic domain, ANNs have
been applied to problems such as phoneme classification (e.g., [Waibel et al., 1989]) and word
classification (e.g., [Tebelski, 1995]). In all of these cases, preprocessing was required for the
neural network and most of the expertise of the research involved understanding not only
the domain, but how it interfaced with the ANN topology and reinforcement policy.

Conrads, Nordin, and Banzhaf have done some nice work on speech discrimination using
GP [Conrads et al, 1998]. Jason Daida did work on image recognition [Daida, 1996]. Walter
Tackett did some feature discovery and image discrimination work finding tanks in forest
scenes [Tackett, 1993]. Nordin and Banzhaf did some work on image and sound compression
using GP [Nordin and Banzhaf, 1996]. Poli has done some good work on the evolution of
image filters for analysis of MRI images [Poli, 1996a].

8.3 Orchestration

This is not the first paper to discuss the orchestration problem in its general form. [Selfridge,
1966] is an interesting description of this exact problem from over thirty years ago. Nor
is this research the first time that the fitness function in evolutionary computation has
included some measure of "cooperation." [Haynes et al, 1995, Luke and Spector, 1996,
Haynes and Sen, 1996] are examples of the evolution of behavior coordination. In these
papers, the "teams" are explicitly grouped, leading to a natural incorporation of cooperation
into the fitness function. [Wolpert, 1992] gives a very thorough theoretical account of
"stacked generalization." The general conceit of stacked generalization is that instead of
having a learning algorithm entirely solve a problem, one or more models can be used to
partially solve the problem. Then, the output of that model(s) can be "stacked" as inputs
to a new learner. Though the description is very different, the orchestration problem can be
seen as a specific difficulty in stacked generalization. This work has attempted to address
some of these specific difficulties.

8.4 Function Sensitivity Approximation

There is an entire field of study called Automatic Program Differentiation. For a good
overview of this field, try [Griewank and Corliss, 1991]. The tools and techniques from this
field are generally more thorough and exact than the Function Sensitivity Approximation
presented in this thesis. Briefly, this section will present the attributes of Function Sensitivity
Approximation that distinguish it from the bulk of the work done in Automatic Program
Differentiation.

Firstly, much of the work done in Automatic Program Differentiation seeks to use the
chain rule to develop symbolic partial derivatives of the outputs with respect to the inputs
(e.g., [Chavent et al., 1996]). A lot of the work in this field does, however, concern itself
with differentiating non-differentiable programs (e.g., [Beck and Fischer, 1995]. One of the
basic assumptions made by this field is that they have access to the code to be differentiated.
This is not an assumption violated by the needs of PADO and NP, but it is an assumption
that Function Sensitivity Approximation does not need to make.

8.5. WORK RELATED TO THESIS CONTRIBUTIONS 117

With the exception of one or two large complicated systems (e.g., [Bischof et al., 1992]),
none of the applications developed in this field works well with very large numbers of inputs.
For example, imagine a four parameter PADO PSP examining a video image. On one level,
it has four parameters. On another very real level however, it has 65,536 inputs if each
video image is 256x256 pixels, since this video image can change independent of the four
input parameters and independent of the PSP code in question. This is a clear advantage of
Function Sensitivity Approximation.

The derivative of an input is a local property. If small perturbations to an input have no
change, the attitude of the Automatic Program Differentiation field is that they can get no
information about what large changes might do. This is true, but since what NP needs is to
know the sensitivity (which is not, as just pointed out, the same as the derivative), this is a
serious limitation.

And finally, the techniques developed by this field usually assume that the application
for doing the automatic differentiation will have to be run once per new control path in the
program [Griewank and Corliss, 1991]. Of course for complex programs this could take an
extremely long time. Function Sensitivity Approximation is not free from this problem,
but it does not need to explicitly wait until all control sequences are seen before it has an
approximation to the sensitivity (by definition).

In summary, the needs of NP for refining the Credit-Blame map to evolve Turing complete
programs is "how likely is a random change in input a; to cause the function output to change
at all." The reason Function Sensitivity Approximation has not duplicated the work of this
field is largely because this is not the typical problem they set out to solve.

8.5 Work Related to Thesis Contributions

In order to frame this section's descriptions of related work, here is a summary of the
contributions of this thesis:

• Algorithm Evolution

— Evolution of multiple evolved specialist programs.

— Neural Programming: Algorithm representation for program evolution that
facilitates internal reinforcement.

— Internal Reinforcement: use of a Credit-Blame map for focused, principled
genetic search operators.

* Function Sensitivity Approximation: automatic analysis of function in-
put/output sensitivity.

* Credit-Blame map: creation and sensitivity-refinement of credit-blame as-
signment of program internals based on program behavior.

• Learned Signal Understanding

— Orchestration: Classification decomposition and discrimination task solution
synthesis.

118 CHAPTER 8. RELATED WORK

— Parameterized Signal Primitives:

* Arbitrary signal size and type independent of program size.

* Expert knowledge input at the symbolic (programmatic) level.

Both GP (e.g., [Koza, 1992, Banzhaf et al, 1998]) and ANNs (e.g., [Rumelhart et al.,
1986]) continue to be well investigated. In ANNs, the focus on improving the power of the
technique has not been on changing what is inside an "artificial neuron." Works like [Dellaert
and Beer., 1994, Sharman et a/., 1995] have, however, investigated the possible additional
benefit of complicating and un-homogenizing artificial neurons. To the best of our knowledge,
in the context of ANNs and principled update policies like backpropagation, these investi-
gations have not yet been extended to arbitrary, potentially non-differentiable functions like
those typically used by human programmers and by GP programs.

An important current aspect of the PADO architecture is the orchestration of many
programs of similar behavioral goals into a single sub-system of the total PADO system.
These sub-systems are then orchestrated into the total PADO signal understanding system.
This is not the first use of multiple experts to improve the performance of a system. In AI,
the general concept dates back at least as far as the pandemonium architecture [Selfridge,

1966].
Papers like [Blum, 1995] point out the advantages of "asking the opinion of more than one

expert." The Winnow [Littlestone, 1988] and Weighted-Majority [Littlestone and Warmuth,
1994] algorithms, for example, utilize this very fact to, in some case, improve performance
of the underlying algorithm. [Bielak, 1993b] is a thesis in which the possibility of using
multiple experts for separate domains, or different modalities of the same domain, can be
coordinated, often with large positive effect. PADO's orchestration, which is an extension
of these ideas, specifically notices and incorporates the readily available pool of different
experts found in an evolutionary setting.

Iterative deepening in genetic programming has been a peripheral focus of this thesis
work. Iterative deepening in program space is another interesting way to try to address the
evolution of algorithms in a principled way. This idea has been investigated in the ADATE
work [Olsson, 1995]. In ADATE-,*iterative deepening is done on minimum description length
codes, where the codes are made up of program encodingsand associated errors. In ADATE
this encoding is in the form of ML programs. So ADATE is doing iterative deepening in a
sort of algorithm evolution.

The ADATE work creates a very different representation for algorithm evolution with
the goal of improving the efficiency of the search [Olsson, 1995]. In ADATE, programs are
evolved in pure functional ML (i.e., no loops, only recursion). ADATE does not use mutation
and crossover, but instead defines a set of transformations that are always syntactically legal,
type legal, and, with some of the transformations, guaranteed to produce a new program
that performs at least as well on the training set (though of course that guarantee does not
extend to a random sampling from the same distribution of inputs). However, these program
transformations do not react to the behavior of the programs, nor target specific aspects of
a program for change because of those observed behaviors.

One of the best descriptions of and attacks on the lack of a clear, locally optimal update
procedure is [O'Reilly, 1995]. In her thesis, O'Reilly gives good evidence for this as an

8.5. WORK RELATED TO THESIS CONTRIBUTIONS 119

important flaw in the GP paradigm and introduces a locally optimal hill-climbing variant as
a recombination element within GP.

The fact that its similarity to NP is in representation, not in use or objectives (i.e.,
IRNP), [Poli, 1996b] is worthy of note. Poli describes Parallel Distributed Genetic Pro-
gramming (PDGP), a type of genetic programming which can be used for the develop-
ment of parallel programs in which symbolic and neural processing elements can interact.
PDGP is based on a graph-like representation of the parallel programs. These programs
can be changed through crossover and mutation operators in the style of the traditional GP
paradigm. [Angeline, 1997a] is another recent example of GP moving from the traditional tree
structured representation out into the more general world of general graph representation
for program evolution.

[Baxter and Bartlett, 1998] is an example of using nearest neighbor as the top level
discriminator for classification. This particular work focuses on a distance metric called
Canonical Distortion Measure and shows that this is optimal for 1-NN when the function
classes can be expressed as linear combinations of a fixed set of features. The particular
classification example used in this work is a Japanese Kanji OCR problem.

There are certainly other explorations of algorithm evolution in which the representation
is changed with positive results. One of the most notable examples is [Nordin, 1997b],
which describes evolution or induction of register machine code. This machine learning
technique (called CGPS) is a variant of genetic programming applied to evolution of binary
machine code for a real computer (a Sparc 5). This technique turns out to be very machine
efficient. This research work includes applications to robot control as well as image and
sound processing.

In GP, the focus of investigation for increased power of the technique has not generally
been on changing the GP representation or on finding principled (non-random) update poli-
cies, as in our work. Some work has, however, been done in these areas. [Rosca and Ballard,
1996] describes a process for trying to find sub-functions in an evolving GP function that are
more likely than randomly selected ones to contribute positively to fitness when crossed-over
into other programs. [Angeline, 1996] and [Fogel et ai, 1995] describe possible approaches
for allowing the mechanism of evolution to provide self-adaptation all the way down to the
single node level.

As was described in Section 6.1, issues of credit-blame assignment are central to the
NP representation and the IRNP procedure. The IRNP procedure uses a form of bucket-
brigade to deal with part of the credit assignment problem. The contribution of this work is,
however, not the bucket brigade solution to the credit assignment problem. The contributions
of NP and IRNP do include the identification of a credit assignment problem in EC and the
application of the bucket-brigade algorithm to help tackle that issue.

When looking at related work in the credit assignment area, even restricting our attention
to the field of AI, the problem of credit assignment has been discussed in a wide variety of
contexts. The bucket-brigade algorithm is one of the oldest versions discussed as an explicit
mechanism by Holland [Holland, 1975] or as an implicit mechanism in works such as [Wilson,
1987]. The variant of a profit-sharing plan was introduced in [Holland and Reitman, 1978].

The bucket-brigade algorithm is just a special case of the general temporal difference
methods (TDM) [Sutton, 1988] like Q-learning (though that is not the historical order of the

120 CHAPTER 8. RELATED WORK

two ideas) [Watkins, 1989]. Back propagation is another form of TDM and so the connection
can also be made to the bucket-brigade algorithm. This connection is brought out in works
such as [Cribs and Smith, 1996]. For an excellent short introduction to some of these issues,
see [Wilson and Goldberg, 1989].

Chapter 9

Conclusions and Future Work

9.1 Conclusions

9.1.1 Reviewing the Motivation and Goals

One of the original motivations for this thesis was the impression that, given the slow progress
of existing machine learning techniques in the general signal-to-symbol domain, a signifi-
cantly different direction would be worth exploring.

Evolutionary computation, and genetic programming in particular, were chosen as the
general models on which to base this work. GP was selected because it was a relatively
unexplored area and because genetic programming has the opportunity to develop much
richer learned models for addressing the signal-to-symbol problem than many of the more
established learning mechanisms.

The other primary motivation for this thesis was the conviction that genetic programming
has been under-appreciated as an AI technique because the unfocused nature of the genetic
search operators makes the GP field seem unfinished. This led naturally to a research agenda
of finding a way to introduce principled internal reinforcement into the GP process.

Once the decision had been made to create PADO, a domain independent signal-to-
symbol mapping tool using GP, and to use PADO as a vehicle for exploring intelligent search
in program space, a number of secondary motivations were created for the thesis. PADO
ought, when possible, to maintain the advantages of current machine learning techniques for
signal-to-symbol mapping and to avoid the disadvantages of those techniques where possible.

An important advantage of popular existing machine learning techniques is that why the
techniques work is well understood, thereby generating faith in those methods. One of the
primary motivations of this thesis has been to provide a credit-blame assignment approach
to program evolution along with a more principled search mechanism using that credit-blame
assignment. The goal has been to create the groundwork for this same kind of understanding
that can allow GP to move in from the margin of the field of machine learning. This work has
not focused simply on gradient descent in program space, but rather on the problem of how
to approach gradient descent in program space within the context of evolution. This thesis
has bridged the credit-blame assignment gap by finding a way in which explicit and empirical
credit-blame assignment can find mutual benefit in a single machine learning technique.

121

122 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1.2 Reviewing the Approach

PADO stands for Parallel Algorithm Discovery and Orchestration and has been specifically
designed for supervised learning of signal classification problems. PADO's high level ap-
proach is to divide a given C class signal classification problem into C different simpler
discrimination tasks. PADO learns programs to solve each of these discrimination tasks
using simulated evolution as the learning mechanism. Then these evolved programs, special-
ists in different areas of the classification problem, are orchestrated into a single system that
classifies signals from the domain in question. This orchestration can happen at two different
levels and in a variety of different ways, as presented during this thesis. A nearest-neighbor
orchestration strategy was presented that favored the most reliable of the experts, but also
took advantage of non-linearities in the ways these evolved specialist programs tended to
disagree on confusing signals.

Within the context of PADO, this thesis has contributed a new representation for learning
complex programs. This new connectionist program language, Neural Programming, has
been developed with the goal of enabling a principled update policy for algorithm evolution
called Internal Reinforcement. This is the first such focused, principled update policy created
for the field of genetic programming. Neural Programming enables the construction of a
Credit-Blame map for each evolving program. Sensitivity Function Approximation was also
introduced as a separate contribution of our work. Sensitivity-based bucket-brigade for
refining each program's Credit-Blame map leads to a credit-blame assignment of sufficient
detail to allow internal reinforcement to perform focused, beneficial search operations during
the algorithm evolution.

9.1.3 Reviewing the Contributions

The following is an annotated enumeration of the major contributions of this thesis:

• Algorithm Evolution

- Evolution of multiple evolved specialist programs.

- Neural Programming: Algorithm representation for program evolution that
facilitates internal reinforcement.

- Internal Reinforcement: use of a Credit-Blame map for focused, principled
genetic search operators.

* Function Sensitivity Approximation: automatic analysis of function in-
put/output sensitivity.

* Credit-Blame map: creation and sensitivity-refinement of credit-blame as-
signment of program internals based on program behavior.

• Learned Signal Understanding

- Orchestration: Classification decomposition and discrimination task solution
synthesis.

- Parameterized Signal Primitives:

9.2. FUTURE WORK 123

* Arbitrary signal size and type independent of program size.

* Expert knowledge input at the symbolic (programmatic) level.

• A complete implementation of PADO, NP, and IRNP has been created and tested
successfully on a wide variety of real world domains

• Patent

- Patent on the PADO mechanism for signal classification, learned intelligent re-
combination of programs, and related claims

- Software for Autonomously Learning to Discriminate Between Classes of any Sig-
nal Type/A Method of Autonomous Machine Learning.

- Issued 7/14/98, Patent Number: 5781698.

9.2 Future Work

9.2.1 Making Better Use of Available Tools

This thesis has made a number of assumptions and simplifications in order to make the
important points clear. However, there is opportunity for further dramatic improvements in
how PADO and NP act and this opportunity can even be translated into other algorithm
evolution arenas.

For example, mutation in NP was described as a choice between six different mutation
types and it was simply announced that, for this thesis, all six mutation types would be
chosen with equal probability when a mutation was to take place. This is not the only
option.

To begin with, it is empirically the case, that some of the mutations are simply more
effective than others, or to put it differently, there are uneven probability weights for the
six mutation types such that runs go "better" on average. The Swap-Arc mutation is an
example mutation that benefits from added attention.

Of course there is a finer grain at which these probabilities can be adjusted. While it
is possible to pick a set of uneven probabilities that work better across a large range of
problems, for each domain these probabilities can be adjusted for even higher performance.
A complete study has not been done but preliminary investigation indicates that this higher
performance is likely to be achievable in this way.

An interesting area of future work related to these suggested speed-up mechanisms is the
following. Instead of picking one probability vector for mutation for all problems, or even
picking a new probability vector for each new domain, it is possible to pick a new probability
vector for each generation (and this could be done domain dependently or independently).
Table 9.1 shows how this would work.

The result of this process is that evolution will now have a detailed Mutation-Schedule.
This mutation schedule can be used while it's being created and, after some point, it can
be fixed and just used as is. This mutation schedule can be used domain independently or
domain dependently. The goal of such a mutation schedule would be to pick up "rules" of

124 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

MutationSchedule[i] [j] = 0 (for 1 < i < MaxGenerations and 1 < j < 6)
For each learning session

For each generation i within a learning session
For each mutation to be done on program p with parent p'

Pick a mutation type k based on the probabilities from MutationSchedule[i]
Associate with the mutated program, mutation type k and the parent fitness Gp>
Test the new, mutated program to determine fitness Gv

MutationSchedule[i][k] = fwa(MutationSchedule[i][k],fc(Gp, Gp»))

Table 9.1: Outline for the creation of a Mutation Schedule. Function fwa is weighted average so
that each' trial is equally weighted as MutationSchedule picks up an increasing number of sample
points. The fc returns 0 if Gp is worse than Gpi and otherwise returns the probability that Gp is
actually better than Gp< (as opposed to simply having had it's fitness inaccurately approximated
as higher than Gpi).

the form "Early on, do a lot of changing what's in a node and then later in evolution, do
more changing of how those things are connected."

At first glance, such a mutation schedule seems like its worst case performance is as
good as using an even probability vector (since it can learn that that is what really drives
evolution the fastest). But evolution is now quite so simple. The driving force for changing
the mutation schedule is how much better the child turned out to be than the parent after the
application of a particular mutation type. The hope is that by maximizing the size of these
one step improvements in the program evolution process, the end result many generations
later will be better. This is a greedy assumption that may be true but has never been
generally demonstrated in EC.

9.2.2 Taking More Advantage of Sensitivity Information

Function Sensitivity Approximation provides, for each function, how sensitive the function's
output is to each input parameter, for a range of different numbers of inputs. While each of
these pieces of information is taken advantage of in the refinement of the Credit-Blame map,
the relation between these different values for a single function is currently not exploited.

For example, many functions that can operate on a variable number of inputs become
much less sensitive to each of the inputs as the number of inputs increases. MULT is such
a function. It can take 2 or more inputs and return the multiplication of those inputs.
To prevent overflow, there will be some return value above which that ceiling is returned
instead of the actual product of the inputs. In such a case, as the number of inputs grows
the sensitivity of the function to each particular input goes down. MEAN is an example of
a function that does not act in this way (as long as the return values have a few digits of
precision).

IRNP could be improved by watching for these changes in the input sensitivity of some
functions and then adjusting mutation and crossover accordingly. As an example, suppose
that there is a node with a low credit score and suppose this node's function is MULT. If this

9.2. FUTURE WORK 125

node has inputs from a number of high credit score nodes, IRNP would currently mutate
the node function in an attempt to take better advantage of the incoming high credit values.
But knowing that MULT is not very sensitive to any of its parameters when there are too
many of them, it would be worth trying to remove one of the inputs (even if it comes from
a high sensitivity node) in the hope that the MULT node responds more actively to the
remaining inputs.

This "sensitivity to sensitivity" extends to the parameterized signal primitives as well.
For example, suppose some visual processing primitive that acts on rectangular regions

(00,01,02,03) of the input images is defined so that, if only three inputs (00,01,02) are

provided then the PSP makes the assumption that a3 = 2 * 01. By looking at the range of
sensitivity values for different numbers of inputs, IRNP could notice and take into account
the fact that the output value is highly sensitive to the value of a\ and that this effect can
be smoothed out by adding a fourth parameter.

9.2.3 Extending IRNP Bucket Brigade

As described in this thesis, the Credit-Blame map for an NP program is created by first
identifying program aspects (nodes) that are directly related to the task to be learned.
Second, this Credit-Blame map is refined to reflect the topology of the program through a
bucket brigade backpropagation of the credit scores accumulated in the first approximation
to the Credit-Blame map. The effect of this second phase is to make sure that the Credit-
Blame provides credit not only to the nodes that create "good" values, but also to nodes
that contribute to the creation of those values.

The Credit-Blame map could be improved further through an additional step: forward
propagation of blame. As described in this thesis, the blame that exists in the Credit-Blame
map is only a lack of reward. If we could find something specific to blame a node for, we
could explicitly refine its credit score to reflect this punishment. The key insight in forward
propagation of blame is that nodes are "bad" if they receive "good" values and output "bad"
values. This can be operationalized as shown in Table 9.2.

Until no further changes
For each node x in the program

For each arc (x, y) of that node
if (CS, > CS,)

Table 9.2: The process of bucket brigading the Credit Scores (CS) throughout an NP program for
forward propagation of blame.

The real question of course is, what should fb be? The problem is that if fa always
reduces CSj, in this case, then this is equivalent to simply setting CSy to 0. This was left as
a piece of future work exactly because this (always setting CSy to 0) is undesirable.

126 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.2.4 The Next Level of Proactive Program Changes

One of the benefits of explicit credit-blame assignment is that, at least in some techniques
(e.g., ANNs), it is possible to actually make a change to the model with the goal of adjusting
specific values in specific directions. For example, in ANNs, backpropagation does exactly
this: each node is labeled with a desired change in its output value and then weights are
altered to locally accomplish this change.

The same functionality could be added to IRNP, though probably not as the dominant
feature as it is in ANNs. There are some functions (e.g. ADD) for which the derivative
exists. So if there is a node in an NP program and it has been determined that that node's
output should be increased, this can be accomplished recursively by raising one or more of
that node's input values. Such backprop-specific change suggestions can be passed through
many functions (e.g. ADD, SUB, MULT, COS) including some functions whose derivative

is undefined (e.g., IF-THEN-ELSE).
The reason that this is not currently the central theme of IRNP is that, because the NP

representation accepts arbitrary functions, some of those functions will have the attribute
that no amount of investigation (e.g., function sensitivity approximation) will illuminate how
the inputs should be changed in order to affect the output in a specific way.

Take for example, the function PSP-AVERAGE that takes four inputs (a0,a1,a2,a3) and
returns the average pixel intensity in the region of the current video signal described by the
rectangle with upper left corner (a0,a,i) and lower right corner (a2,a3). The derivative of this
function may be as complicated as the set of images that the function will be exposed to!
And this function, PSP-AVERAGE, is at least continuous; if one of the four parameters is
changed by a small amount, the output will be fairly close to what it was before the change.
There are some functions (e.g. PSP-MAX) which are discontinuous, which poses its own
problems.

9.2.5 META-Orchestration

This thesis has described a number of orchestration strategies. All of these strategies were
meant to be executed at the end of each generation and, for that reason, could not be
excessively expensive. However, there is another kind or level of orchestration that would
undoubtedly be a profitable avenue of future work. There is no reason that at the end of
an entire learning episode (e.g., after 80 generations of evolution), a more expensive, more
thorough form of orchestration could not be performed.

This META-Orchestration could take a number of directions. There could be a more
thorough search of weight space or a more thorough search for a set of programs that work
well together. This would be an appropriate point to orchestrate multiple programs from
each discrimination pool as well as each of the C different discrimination-solutions. Nearest-
Neighbor orchestration could be run and considerably more time could be spent customizing
the warping of the space to maximize the expected out-of-sample performance.

Beyond more in-depth orchestrations in the veins already discussed, there are more com-
plex options as well. In the extreme, the outputs of some of the best programs could be
used to create values that instead of being directly orchestrated, are fed into another learn-
ing system as input. In fact both standard GP and ANNs are good candidates for such

9.2. FUTURE WORK 127

META-learning, and of course this META-learning is just a more complex sort of learned
orchestration.

Appendix A

Notation Table

Notation Description
CLi The ith input to a node

Q>x,i Input number i into a specific node x (when there is potential confusion)
A Number of inputs into a node
B Number of programs from each discrimination pool orchestrated by FL-

C The number of classification classes
KJOX The credit score for node x

Dx,t Indicates the evaluation of node x on timestep t
E The testing signals

Ei The z'th testing signal
\E\ The number of testing signals

FL The lower level orchestration procedure

FH The higher level orchestration procedure
Gp The fitness for NP program p

HI Compressed value of what node x output during examination of Si

hj Generic loop variables
J Number of biased-random groups Pj. (1 < j < J)
K The number of programs in each reproduction selection tournament
L The labels associated with the training signals

U The ith training signal label

1^1 The number of labels (always the same as l^l)
M The number of programs in the population
Np The number of nodes in program p

At The space used for computing the Nearest-Neighbor quantities
0 A node output

129

130 APPENDIX A. NOTATION TABLE

Notation Description

O Gaussian random number generator

P An NP program
Evolved-Orchestration group j for discrimination pool i

Q
R

S

Generic loop range maximum
The response of an evolved program
The sensitivity of function / with A inputs to input number a;
The training signals

Si
\s\
t
T
x,y, z, u,v

The ith training signal
The number of training signals
The time loop variable
Time loop range maximum (MaxTimeSteps)
An NP program node
The directed arc from node x to node y

W,V
z

A vector of weights
The set of programs to test during orchestration learning

OUT, fib,/,...
a

ß

Arbitrary functions
Measure of drag on an airplane wing under design
Measure of lift on an airplane wing under design

8
e

A point in M space
Threshold for ending the Credit-Blame map refinement process

Appendix B

Turing Complete Programs

The terms program and function have been used almost interchangeably in GP to date.
However, for historical reasons within GP, these are the two names which can best be used
to distinguish two very different kinds of languages/representations and the evolving of
individuals written in them. The following quote from the latest text book on genetic
programming acknowledges this important distinction (using s-expression as a synonym for
"function").

"The topic we discuss in this section is that PADO works not with s-expressions
but with programs."

- From Genetic Programming: An Introduction, 1998.

function is, mathematically, a many-to-one mapping from a range to a domain that has,
among other things, an execution time that is a bounded function of the size of the
element chosen from the range as input. Modulo-l(x) is a function. Arc-Tan(x) is
a function. Balanced-Parentheses(<some-string>) is not a function. A function is
computationally equivalent to a regular language. Functions are often referred to as
elementary functions. An elementary function is any of the set of recognized elementary
functions such as +, *, COS, etc. or a composition of such functions.

program is a Turing complete entity composed of elementary functions, loops (and/or
recursion), and an inexhaustible supply of state (memory). For a succinct introduction
to Turing completeness, try [Hopcroft and Ullman, 1979].

The hierarchy of languages and their computational expressiveness is shown in Figure B.l.
See [Hopcroft and Ullman, 1979] for a primer on these distinctions.

A good question is "So? Does this really matter?" The answer, in both theory and
in practice is "Yes. It does matter." It matters because programs written in a Turing
complete language are harder to evolve and because they are more powerful computationally
(computationally expressive).

Evolutionary computation, like most forms of machine learning, depends on the ability
to hill-climb. That is, success is predicated on the idea that you can make small syntac-
tic changes to a hypothesis space function/program and that these changes will result in

131

132 APPENDIX B. TURING COMPLETE PROGRAMS

TURING MACHINES

Classifier Systems
GP + memory + loops

Recurrent Neural Networks

Traditional GP
Feedforward Neural Networks

Figure B.l: Expressiveness of the Representation - The Chomsky Hierarchy

semantic (i.e., behavioral) changes small enough that hill-climbing'can occur. Figure B.2
illustrates this issue.

In chaotic systems, changes no matter how small, can cause unboundedly large changes in
the resulting system's behavior. Regular Languages, the computational class of both Feed-
forward Neural Networks and Traditional GP, cannot support chaotic systems. Recursively
Enumerable languages (Turing complete languages), the computational class of Recurrent
Neural Networks and GP+memory+loops, can support chaotic systems. This means that
hill-climbing works less well in the more expressive languages. In summary, evolution depends
on hill-climbing. Hill-climbing depends on the tight coupling of syntactic and semantic
changes. These changes are much less tightly coupled in more expressive languages (e.g.,

Semantic Space Syntactic Space Semantic Space

i Program) (Program) i Program

\ X ' V X J '* X
. V;-'

v---' Mutation ,'
' ""■- N ? ? "-.

 ' ' 1

/ \ / / A.
/ Program 1

*' 1 X-nsw /
,r

M,"
^^ y 1 Program

i X-new „

\ Programs~,
i X-new '

Figure B.2: The distinction between Syntax and Semantics for program evolution.

133

GP+memory+loops) than in less expressive languages (e.g., simple tree-GP).
The genetic "operators" are the source of search in algorithm evolution (see Chapter 2

for a review of this process). Operators are, by definition, used within the context of a
representation for evolution. How "good" a representation is is only measurable with respect
to a particular set of operators. The conclusion here, taken to heart by this entire thesis, is the
idea that operators and representations should be designed together so that they coordinate
correctly.

Given that programs written in Turing complete language are more difficult to evolve than
programs written in less expressive languages, the other clear question is, "So why bother
evolving them?" The answer to this is simple. First, programs are more computationally
expressive than functions. This means there are things programs can learn that functions
cannot. Second, and more immediately practical, even when a problem is posed so that a
sufficiently large function could solve the problem, a program might be able to express a
solution in much less space and therefore be seen as a better solution through appeals to
Occam's Razor or the MDL principle.

B.0.6 The Necessary Theoretical Confession

Technically, theoretically, and correctly, the programs evolved in this thesis are not Turing
complete. It is a meaningless statement to say that these evolving programs are "practically
speaking" Turing complete since Turing completeness is a theoretical label.

There are two reasons that the NP programming language is not theoretically Turing
complete: limited memory and limited running time. NP programs as they have been
presented here (with or without the use of Indexed Memory) can and do use considerable
amounts of memory, but not arbitrary amounts of memory. This could be easily changed
by simply allowing the indexed memory to be extended indefinitely as those memory cells
were indexed by the program. Clearly though, NP programs even without this addition
have the memory characteristic of programs written in Turing complete languages that, from
a practical point of view, adds to the complexity that this thesis is, in part, trying to address.

The second issue is how long the evolved NP programs are able to run. Programs written
in a Turing complete language must have the capability to run for an arbitrarily, possibly
infinite, period of time on any particular input. Practically, this is also not possible when
trying to learn algorithms as Section 3.4.3 describes in detail. So, in practice, NP programs
have a maximum time in which to complete their computation. This means that theoretically,
NP programs are not of the same computational power as Turing machines. However, NP
programs, even with this time limit have the running time characteristic of programs written
in Turing complete languages that, from'a practical point of view, adds the complexity that
this thesis is, in part, trying to address. As good evidence of this, see Section 7.5 in which it
is demonstrated that when additional time is made available to the evolving programs they
do indeed use those additional iterations to improve their performance.

This is all to say that while it is theoretically inaccurate to say that this thesis is evolving
Turing complete programs, this thesis makes that practical claim in the spirit that it com-
municates approximately where, on the grey continuum of Turing complete-ish languages,
the NP programming language falls.

Appendix C

NP Implementation Details

C.l Initializing an NP program

The results discussed in this thesis are surprisingly independent of the initialization of the
NP programs. Never-the-less, this appendix describes the particular manner in which NP
programs were initialized for experimental results of this thesis.

All programs are initialized in an identical, independent manner as follows:

1. Pick a number of nodes for program p to begin with, Np. This value is chosen uniform
randomly from the range [Min-Number-Nodes .. Max-Number-Nodes]

2. Assign an action to each node x, 1 < x < Np

• With 33.3% probability, choose a constant uniform randomly from the range [Min-
Constant .. Max-Constant]

• With 66.7% probability, choose a function uniform randomly from the set of
functions made available by the user.

3. Assign arcs for each node x

(a) Pick a number of inputs for the node uniform randomly between the minimum
arity for node x's action and Max-Number-Outputs

(b) For each input arc needed, choose a nearby node y

• A nearby node is a node chosen uniform randomly from the set of nodes
within 10% of the same node number in order of creation (as defined in #2
above). • .

• For example, if the program has 100 nodes and we're looking for nodes to act
as source nodes for which node 72 will be the destination node, those nodes
are chosen uniform randomly from the range [Node62..Node82].

(c) Create the arc (y, x)

135

136 APPENDIX C. NP IMPLEMENTATION DETAILS

C.2 NP and PADO Knobs

This section is an itemization of the knobs in the implementation of PADO and NP. Many
of them are only flags for turning on and off functionality that is compared in this thesis.

• Flags

InternalReinforcementMUT Internal Reinforcement for Mutation can be turned
on and off.

InternalReinforcementCROSS .Internal Reinforcement for Crossover can be turned

on and off.

ClassificationFlag This flag switches PADO between classification and target value

approximation modes.

ProgramResponse Only one of these two values can be defined.

UseOutputNodeResponse This flag sets PADO to read the program's re-
sponse from the collected OUTPUT node values.

UseMemoryBasedResponse This flag sets PADO to read the program's re-
sponse from Indexed Memory.

• Parameters

NumClasses (C)
The number of classes in the problem to be solved. This value varied throughout
the thesis.

NumberTrainingCases (IS*!)
This is the number of training signals made available to the evolving programs
each generation. This number varied between experiments simply because the
available data varied from domain to domain. •

NumberTestingCases (\E\)
This is the number of distinct, unseen testing signals made available to the evolv-
ing programs each generation. This number varied between experiments simply
because the available data varied from domain to domain. To maintain the mean-
ingfulness of the experimental results, this value was always at least as large as
NumberTrainingCases and often 2 to 5 times larger when the data permitted.

PercentChance
The sum of these two values equals the percent of the programs to move trans-
formed to the next generation. Except for the section in which the sensitivity of
PADO and NP to these values was explored, these two values were fixed to the
(fairly arbitrary) values shown.

CrossOverPercentChance 36 (Pc)

C.2. NP AND PADO KNOBS 137

MutationPercentChance 60 (PTO)

PopulationSize (250*NumClasses) (M)
For all experiments described in this thesis, this value was fixed to (250*Num-
Classes). There is nothing special about this value and fixing it across a number
of problems from different domains demonstrates that PADO and NP are not
overly sensitive to this parameter. Of course, as with all EC techniques, PADO
and NP will work better if this value is increased.

NumberNodes (Np)
NP programs can be of any size in theory, but in practice there must be some limit
to how large these programs can grow. To avoid special casing in the NP code,
having a minimum program size larger than 4 nodes allowed the system to run
slightly faster. The following values were chosen and fixed for all the experiments
done in this thesis. These values can obviously be changed and NP obviously
performs better when it is allowed to created larger programs.

MaxNumberNodes 80

MinNumberNodes 10

NumberlnTournament 5 (K)
This is the number of programs that are compared to pick one that is best to
put into the mating pool. See Section 2.1.1. This value was fixed for all the
experiments described in this thesis.

NumTimeStepsToRun 10 (T)
This is the number of time steps each program is allowed to run before the pro-
gram response is extracted and used. NP programs increase their performance
noticeably as this number is increased. This number was fixed for all the experi-
ments described in this thesis except as described in Section 7.5.

MaxGenerations 80
Clearly, PADO and NP are independent of the length of time learning continues
for. However, in practice, in order to do a statistically significant number of inde-
pendent trials, this value must be reasonably small. 80 was chosen for historical
reasons and fixed for all the experiments described in this thesis.

NumberOfMemoryCells 10
When Indexed Memory is on, it is practical to define some limit to the size of the
indexed memory. This could be 10,000 and there is some evidence that this still
works fine [Teller, 1994a]. However, this value was picked and fixed for all the
experimental results in which Indexed Memory was used. See Section 6.6.

NumberOfFunctions 13
NP program can be built out of any number of atomic functions. In practice
though, there must be some pool of such functions to draw from during the
initialization and mutation phases of evolution. This value was fixed and used in
all the experimental results discussed in this thesis except with the Generic Signal
domain in which this value was 10.

138 APPENDIX C. NP IMPLEMENTATION DETAILS

MaxNumberOutputs 5
In theory an NP node can have up to (or even more than) MaxNumberNodes
outputs. In practice, however, this is unnecessary and takes up a lot of space.
This value was fixed (higher than the maximum number of inputs) and used in
all the experiments in this thesis.

MaxNumberlnputs 4
In theory, an NP node can have up to MaxNumberNodes inputs. In practice,
however, this is unnecessary and takes up a lot of space. This value was fixed
(lower than the maximum number of outputs) and used in all the experiments in
this thesis.

MinFragmentSize 2
When doing crossover, it is convenient to define a minimum number of nodes that
must remain in either fragment after the graph cut has been performed. This
value was fixed and used in all the experiments in this thesis.

ConstantRange
In theory NP programs can operate with either floats or integers and over any
range of numbers. In practice, some maximum and minimum values need to be
chosen. The integer range [0..255] was chosen and fixed for all the experiments in
this thesis.

MINCONST 0

MAXCONST 255

OrchestrationSearchSize 12000 (Qi)
One of the Orchestration Options, Program-Search, is to chose a set of programs
that work particularly well together (see Section 4.1.2). There needs to be a limit
to the number of search steps in this process. This value is that limit and was
fixed for all the experiments in this thesis.

OrchestrationTournamentSize 4
In Program-Search, this is the greediness parameter that adjust how new program

groups are examined.

SearchOWeightsSize 12000 (Qi)
One of the Orchestration Options, Weight-Search, is to choose a set of weights that
help a fixed group of programs work particularly well together (see Section 4.1.3).
There needs to be a limit to the number of search steps in this process. This value
is that limit which was fixed for all the experiments in this thesis.

MutationTypes
Given that NP currently has six mutation types, when a particular mutation
occurs one of these six mutation types must be chosen. The six values below are
relative weights. Because they are all set to 1, all six have an equal probability of
being chosen, as described in Section 6.3.1.

SwapArcChangeChance 1

FunctionChangeChance 1

C.3. FURTHER IMPLEMENTATION DETAILS 139

AddNodeChangeChance 1

DeleteNodeChangeChance 1

AddArcChangeChance 1

DeleteArcChangeChance 1

MemAndOutputlnitialVal (MINCONST+1)
When Indexed Memory is used, the memory cells must be initialized before an
NP program begins execution. This is the value all the cells were initialized to in
all thesis experiments that included indexed memory. This value is also used to
set the initial values of all arcs and the inital value for each OUTPUT node.

CheckNumberFragments (2*MinNumberNodes)
When internal reinforcement crossover is in use, a certain number of cuts in a pro-
gram must be examined before a "best" one is selected from among them. There
are so many possible cuts that any value here would only be a small sampling.
This value was chosen and fixed for all experiments in this thesis.

CheckHowManyNodes 50
When internal reinforcement is in use, a certain number of nodes must be exam-
ined before a mutation action can be taken. This value is a percentage of the total
number of nodes that are to be examined in that particular program. This value
was chosen and fixed for all experiments in this thesis.

It is interesting to note that we can make NP do population hill-climbing instead of
evolution simply by setting:

• NumberInTournament —> PopulationSize (M)

• CrossOverPercentChance —>■ 0 (Pc)

C.3 Further Implementation Details

This section describes a few other important implementation details that will help to make
clear how NP and PADO were constructed and the trade-offs involved.

C.3.1 Memory use with IRNP

The first important point to note is that IRNP takes an amount of memory that increases
linearly with the number of nodes in a program and linearly in the number of training
examples. The "outer loop" for EC training can either be of the form:

For All Training Examples
For All Programs in the Population

Measure This Program's fitness on this Training Example

or it can be:

140 APPENDIX C. NP IMPLEMENTATION DETAILS

For All Programs in the Population
For All Training Examples

Measure This Program's fitness on this Training Example

In the second case, the memory requirements for IRNP also increases linearly with the
number of programs in the population. This is because IRNP can be done independently
(i.e., in the same memory space) for each program (trained over the entire training set). But
the reverse (each training set signal over all programs) is not true. IRNP is, by definition,
computed over all of the training examples.

C.3.2 Implementation of the OUTPUT nodes in NP

This section presents the details of how the OUTPUT nodes in NP work in the thesis
instantiation of PADO. All the details below are specific to this instantiation and could be
quite different and possibly more effective in future implementations.

As was already discussed, each OUTPUT node on each timestep produces as output the
mean of the values on its input arcs. Let us call this output value produced on timestep
t to be Of As a side-effect, each OUTPUT node adds the value (Ot * t) to a variable
called Response and adds t to the variable ResponseWeight. When the timestep threshold is
reached, the response of the program is taken to be Response/ResponseWeight. This means
that every input into an OUTPUT is weighted equally, every OUTPUT node is weighted
equally (relative to each other), and both of these factors are weighted by time so that the
later values are linearly more important.

Notice also that this sort of an implementation is an anytime algorithm. That is, at
any point during the NP calculation, an answer can be extracted and that answer is not
simply a default value if the answer is not "ready" yet. Instead, NP programs with this
implementation of the OUTPUT nodes are actually constantly improving their response and
at any point, there is a working response ready to be used (i.e., Response/ResponseWeight)

even before timestep threshold is reached.

Appendix D

Biology Data

D.l Hydrophobicy/Aliphaticy

The computation for PSP-Hydro is the average of the hydrophobicity of each of the amino
acids in the specified region. Table D.l illustrates the lack of agreement on such a seemingly
simple chemical property. For the protein folding experiment described in Section 7.6, the
Kyte and Doolittle numbers were chosen (for no particular reason).

Amino Acid Kyte/Doolittle Engleman Amino Acid Kyte/Doolittle Engleman
Phe 2.8 3.7 Met 1.9 3.4
He 4.5 3.1 Leu 3.8 2.8
Val 4.2 2.6 Cys 2.5 2.0
Trp -0.9 1.9 Ala 1.8 1.6
Thr -0.7 1.2 Gly -0.4 1.0
Ser -0.8 0.6 Pro -1.6 -0.2
Tyr -1.3 -0.7 His -3.2 -3.0
Gin -3.5 -4.1 Asn -3.5 -4.8
Glu -3.5 -8.2 Lys -3.9 -8.8
Asp -3.5 -9.2 Arg -4.5 -12.3

Table D.l: Kyte, J., Doolittle, R.F., A simple method for displaying the hydropathic character
of a protein., J. Mol. Biol., 157, 105-132, 1982. Engleman,D.M., Steitz, T.A., and Goldman,
A., Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu.
Rev. Biophys. Biophys. Chem., 15, 321-353, 1986.

D.2 Atomic Weights

The computation for PSP-Weights is the average of the mass of each of the amino acids
in the specified region. These individual values are shown in Table D.2.

141

142 APPENDIX D. BIOLOGY DATA

Residue Symbols Mass Residue Symbols Mass

ALA A 71.09 ARG R 156.19
ASP N 114.11 ASP D 115.09
CYS C 103.15 GLU E 129.12

GLU Q 128.14 GLY G 57.05
HIS H 137.14 ISO I 113.16
LEU L 113.16 LYS K 128.17
MET M 131.19 PHE F 147.18
PRO P 97.12 SER S 87.08
THR T 101.11 TRY w 186.21
TYR Y 163.18 VAL V 99.14

Table D.2: The mass (in daltons) for each of the 20 amino acids. Data after Table 1.1 from T. E.
Creighton, Proteins, 2nd ed., W. H. Freeman and Company, New York, 1993.

D.3 Charged Amino Acids

The computation for PSP-Charged is the average of "amount" of charge of each of the
amino acids in the specified region. For this experiment, we took the simple approach that
amino acids D and E contributed a negative charge of 1, H,R, and K contributed a positive
charge of 1 each, and all other amino acids were charge neutral. This is a serious over-
simplification.

D.4 Van der Waals Volume

The computation for PSP-VdWVolume is the average of the Van der Waals Volume of each
of the amino acids in the specified region. These individual values are shown in Table D.3.

Residue Symbols Van der Waals Vol Residue Symbols Van der Waals Vol
ALA A 67 ARG R 148
ASP N 96 ASP D 91
CYS C 86 GLU E 109
GLU Q 114 GLY G 48
HIS H 118 ISO I 124
LEU L 124 LYS K 135
MET M 124 PHE F 135
PRO P 90 SER S 73
THR T 93 TRY W - . 163
TYR Y 141 VAL V 105

Table D.3: The Van der Waals Volume for each of the 20 amino acids. Data after Table 1.1 from
T. E. Creighton, Proteins, 2nd ed., W. H. Freeman and Company, New York, 1993.

Appendix E

Example Programs

This program is the full version of the program shown in Section 6.5.

Node CreditScore Function Output Arcs Node CreditScore Function Output Arcs

0 0.000000 060 120 li 20i 0i 1 0.000000 CLOCK lo
2 0.000000 144 4o 3 0.668100 CLOCK 192 42 450

4 0.000000 211 30143 5 0.118573 CLOCK 150 272 193 50

6 0.432689 094 44i 203 60 273 7 0.085486 182 290 320

8 0.001133 145 3527i 9 0.085897 165 29i
10 0.166522 182 41i 11 0.694260 045 370 420

12 0.162969 036 222 410 13 0.253838 OUTPUT 15i 35i 30o 27i
14 0.256266 SG-PNT 14i 142 15 0.039802 DIV 460 170

16 0.697369 OUTPUT 172 42i 140 17 0.640655 ADD 18o 190 17i
18 0.685729 SG-MAX 16o 13i 130 19 0.357697 ADD 270 61 19i
20 0.000000 MULT 202 20o 21 0.681141 OUTPUT 430 23i 22i
22 0.667553 SG-PNT 260 Hi 390 23 0.039100 MULT 293

24 0.685848 SUB 212 132 173 I61 25 0.000000 IFTE 250

26 0.250230 MULT 0o 133 252 25i 27 0.238077 IFTE 7o 83

28 0.425428 SPLIT 280 28i 330 340 29 0.091500 SG-MAX 4i32i
30 0.735100 SPLIT I63 31 0.433461 SUB 80 350 82 30i 182

32 0.120807 ADD 292 33 0.000000 SUB 9o
34 0.433530 SG-PNT Ho 8i 31o 35 0.004648 ADD lOo
36 0.263743 MULT 380 37 0.685487 ADD 162 112 360

38 0.282299 SG-MAX 38i 39 0.669771 MULT 21o 230 412

40 0.000000 IFTE 402 41 0.655078 ADD 220 440 40i
42 0.699286 OUTPUT 21i 43 0.683490 SUB 240

44 0.643737 ADD 10i I81 40o 45 0.671457 ADD 213 31i
46 0.000158 ADD 232

143

Appendix F

PADO History

This appendix includes only the briefest view of the two main previous representations used
with PADO. For more information on either of these representations, the best source are the
cited papers.

F.l Historical Representations

The first PADO representation was a tree of nodes (an "S-expression") [Koza, 1992] that was
repeatedly evaluated. Because it had this loop (repeated evaluation) and memory (READ
and WRITE primitives) this representation was Turing complete. Figure F.l pictures this
first PADO representation. This algorithm representation (first proposed in [Teller, 1994b])
was chosen for its readability not for its ease of evolution. In other words, this representation
was motivated by its nearness to the existing GP representation, not for any representation
features which might lend themselves to faster, more effective, or more scrutable evolution.
That made it an appropriate starting point for PADO. However, despite some success with
the initial PADO system using this representation [Teller and Veloso, 1995c], a representa-
tion improvement was found to address other research goals for PADO, such as intelligent
recombination and principled evolution. [Teller and Veloso, 1995c] contains empirical results
for this first PADO representation on a number of different signal domains, including two
visual domains for which empirical results are presented in this thesis.

[Teller and Veloso, 1995d] proposed a new representation for GP programs: an arbitrary
graph structure. Each node, like traditional GP, corresponded to a primitive (now called
an action since the old distinction of terminals and non-terminals arose from their relative
positions in the program tree). Evaluation starts at a particular start node. At each new
node, that node's action is performed and one of its directed outgoing arcs is chosen to
represent the instantaneous change of program control to a new node. The decision about
which of the arcs to choose is based on the state of the program at that moment. This
process continues until a particular stop node is reached at which time the program's answer
is taken either from the top of its argument stack or from some particular memory location.
Figure F.2 shows a PADO program with this representation.

This representation has advantages over the traditional tree GP representation and em-
pirically performs better. Works such as [Teller and Veloso, 1995b, Teller and Veloso, 1997,

145

146 APPENDIX F. PADO HISTORY

The Structure of a Population Individual

,' x^v Main Loop ./Uv

\ ^ - *"

Indexed Memory of Integers

Figure F.l: The original basic structure of a PADO program.

Teller and Veloso, 1995d] present a range of positive empirical results for this second PADO
algorithm representation on a number of domains including the two visual and one acoustic
signal domains for which empirical results are given in this thesis. One of the long-term goals
of the PADO work has been to find ways to improve the efficiency and effectiveness of the
genetic operators by changing the representation of the evolving programs if necessary. This
new representation lent itself to the learning of improved recombination (SMART) opera-
tors through co-evolution [Teller, 1996] (see section F.3) and thereby made progress toward
a major goal. However, a typical "SMART" operator's process of finding an answer was
quite inscrutable, because of the "flow of control" aspect of the representation. This caused
a problem for humans wishing to inspect a learned program. But it was also a barrier to
further improvement of the genetic operators which to be more effective must, we argue,
necessarily "examine" the evolving programs in detail.

F.2 Evolution with Explicit Substructure

In the GP field, there has been considerable effort invested in researching how substructure
(e.g., referenceable subroutines) can be evolved. Substructure is, of course, a means not an
end. Modularity and hierarchy are the ends that substructure facilitates. The argument is
that substructure makes the evolved code smaller, easier to read, and provides a regularity
to programs that is advantageous when there is exploitable regularity in the problem to be
solved. There is ample empirical evidence (see [Koza, 1994]) that this is indeed the case.

F.2.1 ADFs in PADO

In GP, an ADF (automatically defined function) refers to a piece of explicit substructure in
the evolutionary process. For example, each program could have one ADF associated with

F.2. EVOLUTION WITH EXPLICIT SUBSTRUCTURE 147

Main Program ADF(s)

Indexed Memory
11 i 11 i111 i i i i 11 ri

Figure F.2: The basic structure of a PADO program under the phase II representation. There can
be one or more ADF programs for each PADO program. Each ADF program may be referenced
from the Main program, another local ADF program, or a Library program.

it and that ADF could take, for example, two arguments. During evolution, each program
may not only refer to its ADF as though that ADF were simply another two-arity function
(e.g., ADD or MULT), but each program's ADF will also be subjected to genetic operators
so that, over time, the ADF and the program may co-evolve to take advantage of one another
in order to better solve the task at hand.

In the phase I and phase II representations of PADO, ADFs were used with the following
distinction. Traditionally, GP ADFs may not call themselves since that is a form of recur-
sion and so introduces one of the main evolutionary complications associated with Turing
complete languages. However, since PADO was already explicitly dealing with these issues,
allowing the ADFs for each program to contain self-references was no additional burden. In
all other ways, the PADO ADFs were conceptually the same as traditional GP ADFs.

F.2.2 Libraries in PADO

The Library programs (e.g., L17"m Figure F.2) are globally available programs that can be
executed at any time and from anywhere just like'the private ADF programs [Teller and
Veloso, 1997]. But unlike the ADF programs, where each ADF may be run only during the
execution of the PADO program of which it is a part, the Library programs are publicly
available to the entire population. [Angeline and Pollack, 1993] describes a similar concept
called Modules. The distinction is primarily in how these public subroutines are created.
Another related concept for identifying publicly useful subroutines can be found in [Rosca
and Ballard, 1996].

Initially all Library programs are initialized to be random legal programs with the same
^characteristics as ADFs. At the end of every generation, the k worst Library programs are
removed from the Library and replaced with the ADFs of the k most successful programs of
the generation. The "goodness" of a Library program is the sum of the adjusted fitnesses of
all programs that called it, multiplied by how often they called it. The adjusted fitness of
each program is Rank[p] — (MaxRank—MinRank)/2. Notice that, unlike the MAIN and ADF
programs, the individual Library programs do not evolve. Rather they are a storage place for

148 APPENDIX F. PADO HISTORY

some of the best "ideas" in the population and the bad ideas are moved out in favor of other
ideas that have a better chance of being good. In this sense, the Library population evolves
(in fact co-evolves with the main population and the SMART operator population) even
though the individual library programs receive neither fitness proportionate reproduction or
genetic recombination. Further details on this subject can be found in [Teller and Veloso,
1997].

F.3 Learned Algorithm Recombination Algorithms

One of the current debates in the field of GP is how to evolve structures that are more
complicated than simple functional trees. One argument (typified by the cellular encoding
work of [Gruau, 1994b]) argues that GP should be left as is, but that the evolved GP function
tree should express how to build a more complicated structure (like a feed forward NN or an
arbitrary graph). Another camp in this discussion (of which this work is a part) argues that
these more complicated structures should be evolved directly, rather than indirectly. [Teller,
1996] and [Sims, 1994] are examples of such a view. In [Teller, 1996] we address the added
complications that come with manipulation of more complex structures.

The basic function of the genetic recombination operator "crossover" is to take k (usually
two) programs as input and to produce some (usually k) new programs as output that replace
the input programs in the population from which they were drawn. The context of the PADO
representation leads to the need for recombination (crossover) of two arbitrary graphs. Partly
because the "right" way to do graph recombination is not obvious, learning how to do graph
recombination intelligently is a natural desire.

The SMART operators are programs that learn to do this graph crossover better than
recombination operators acting at random. These SMART recombination operators co-
evolve with the main population. Like the programs in the main population, the programs in
the SMART operator population may begin as randomly generated programs. The programs
in this SMART operator population are tested by allowing them to actually perform the
recombinations on the main population. Their fitness values are a function of the relative
fitness of the programs they take as input and the fitness of programs they produce as
output. [Teller, 1996] has a large amount of detail on this subject.

While [Teller, 1996] contains no proof that the hurdles of evolving a more complex repre-
sentation have been cleared, it is a direction of research which may turn out to be as viable
and considerably more flexible than the "growth phase" strategy. In addition, while we have
only reported positive results using SMART operators for the arbitrary graph structured
language, there is good reason to believe that this technique can be used effectively by itself
or in conjunction with other attempts to make the search in EC more intelligent in other
representations.

Appendix G

NP vs. CellularEncoding

Rather than directly evolving programs (even Turing complete programs) as neural pro-
gramming does, it is possible to dissociate the genotype from the phenotype and so to evolve
complex programs indirectly. Cellular encoding [Gruau, 1994a] is the most important ex-
ample of this technique and it is worth highlighting the differences in perspective of neural
programming and cellular encoding.

G.l Overview of Cellular Encoding

There is a range of past and current research efforts that use GAs to directly evolve aspects
of fixed topology neural networks, (e.g., [Porto et ah, 1995, Baluja, 1995, Chambers, 1995]).
In contrast, cellular encoding is a technique for evolving a description of how to build
an arbitrary ANN. "Building an arbitrary ANN" means the evolution of the ANN-topology,
thresholds, and biases as well as the weights themselves. In cellular encoding, each population
individual is a standard GP tree. The terminals and non-terminals are network-constructing,
neuron-creating, and neuron-adjusting nodes.

The cellular encoding tree is not the ANN. It is the genotype. The ANN constructed by
the application of a cellular encoded tree is the phenotype. The fitness of the genotype (the
cellular encoding tree) is measured through the performance of the phenotype (the ANN)
on the desired task.

The advantage of cellular encoding is that all of the standard GP techniques can be
applied without modification to the evolution of a substantially different computation device
(an ANN in this case). This is because cellular encoding is an application of tree-GP, not a
new representation itself.

Reusable neural sub-networks (like ADFs) can be implemented in cellular encoding. Re-
cursion can be implemented to create neural networks for high-order symmetry and high-
order parity functions. Cellular encoding has been applied to the 2-pole-balancing prob-
lem [Whitley et ah, 1995], to six-legged creature walking behavior [Gruau and Quatramaran,
1996], and to Finite Automata development [Brave, 1996b].

149

150 APPENDIX G. NP VS. CELLULARENCODING

E E

A £

input

+ (S.
output

Figure G.l: Cellular encoding tree + embryonic neuron = NN

G.2 Thesis Corroboration from Cellular Encoding

As Section G.l makes clear, cellular encoding is a method for indirectly learning models that
cannot easily be learned in the traditional format of genetic programming. This is true and
cellular encoding is certainly a valuable area of future work in genetic programming.

However, the fact that researchers have gone to such lengths to force the evolution of
complex, non-tree based models into the tree-based format highlights the fact that genetic
programming in its standard form is brittle and cannot directly evolve many of the kinds
of programs of interest to researchers, which is the basic thesis of this research. This is
not to say that cellular encoding does not work, but rather that the cellular encoding work
corroborates the claim of this thesis that GP must be modified or augmented in order to get
important new aspects into the paradigm.

Whether it is better to change the genetic programming paradigm to incorporate gradient
descent style recombination operators like those presented in this thesis, or whether it is
better to leave GP as it is and work on this "developmental process," as typified in cellular
encoding is still an open research question.

Appendix H

Statistical Significance Information

Each of the following graphs shows the standard deviation error for each curve presented
in the referenced figure in the main body of the thesis. Standard error is standard deviation
divided by the square root of the number of independent samples for that point. The
simplest way to read these curves is "There is only a 30% chance that the 'true' curve is
outside of the upper and lower STD curves shown in each figure."

NP evolution in PADO in the Generic Signal Domain

o
ü

a
c
a
o>

to
«>
ß

0.4

1 STD Above WITH IRNP recombination and Weight-Search Orch -©-
1 STD Below WITH IRNP recombination and Weight-Search Orch -+-

1 STD Above WITHOUT IRNP recombination and Weight-Search Orch B
1 STD Below WITHOUT IRNP recombination and Weight-Search Orch ■■*-■

0 5 10 15 20 25 30
Generations

Figure H.l: The standard error curves for Figure 7.2

35 40

151

152 APPENDIX H. STATISTICAL SIGNIFICANCE INFORMATION

o
u

CD

a>
CO

0.95 -

0.85

0.75

NP evolution in PADO in the Generic Signal Domain

10 15 20
Generations

25 30 35

1 STD Above WITH IRNP recombination and Nearest-Neighbor Orch -o-
1 STD Below WITH IRNP recombination and Nearest-Neighbor Orch -t—

1 STD Above WITHOUT IRNP recombination and Nearest-Neighbor Orch B
1 STD Below WITHOUT IRNP recombination and Nearest-Neighbor Orch ■■*••

40

Figure H.2: The standard error curves for Figure 7.3.

l_ 0.9
o
O

0.8
o
co

0.7
as
CD
c
CD 0.6
CD

CO
0.5

CD
H

0.4

NP evolution in PADO in the Generic Signal Domain

10

1 STD Above IRNP Nearest-Neighbor ■■«■-■
1 STD Below IRNP Nearest-Neighbor

1 STD Above IRNP Weight-Search
1 STD Below IRNP Weight-Search

15 20 25
Generations

30 35 40

Figure H.3: The standard error curves for Figure 7.4.

PADO learning using Weight-Search orchestration on the Generic Signal Domain

o
ü

15 20 25
Generations

Figure H.4: The standard error curves for Figure 7.5.

153

PADO learning using Nearest-Neighbor orchestration on the Generic Signal Domain

o
ü

fi

o
O

IS
CO

|2

o
O

|2

15 20 25
Generations

Figure H.5: The standard error curves for Figure 7.6.

PADO learning using Nearest-Neighbor orchestration on the Generic Signal Domain

20 25
Generations

Figure H.6: The standard error curves for Figure 7.7.

NP evolution in PADO in the Natural Image classification domain

30 40 50
Generations

Figure H.7: The standard error curves for Figure 7.9.

154 APPENDIX H. STATISTICAL SIGNIFICANCE INFORMATION

NP evolution in PADO in the Natural Image classification domain

o

CD
CO

ü

o
o

a c
CD
O)
o
W

30 40 50
Generations

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

Figure H.8: The standard error curves for Figure 7.10.

NP evolution in PADO in the Natural Image classification domain
 1

- y* j

1 1 1 1 1 1

^nmnn^^^mnnnnnnnmnnnn ¥tm*m^_

i „^^^ -

*- rw^
1 STD Above IRNP Nearest-Neighbor «- •
1 STD Below IRNP Nearest-Neighbor -t-

1 STD Above IRNP Weight-Search -e—
1 STD Below IRNP Weight-Search -x—

'

i i

10 20 30 40 50
Generations

60 70

Figure H.9: The standard error curves for Figure 7.11.

NP learning in PADO in an acoustic classification domain

80

1'STD Above NP -WITH- IRNP recombination -»-
1 STD Below NP -WITH- IRNP recombination -+—

1 STD Above NP -WITHOUT- IRNP recombination -B--
1 STD Below NP -WITHOUT- IRNP recombination -x~

0 10 20 30 40 50 60 70
Generations

Figure H.10: The standard error curves for Figure 7.12.

80

155

NP learning in PADO in an acoustic classification domain

o
ü

c
o

CD c
CD □)
a>
°?
u>
<D
H

1 STD Above NP -WITH- IRNP recombination -e—
1 STD Below NP -WITH- IRNP recombination -i—

1 STD Above NP -WITHOUT- IRNP recombination -B--
1 STD Below NP -WITHOUT- IRNP recombination -x-

0 10 20 30 40 50 60 70 80
Generations

Figure H.ll: The standard error curves for Figure 7.13.

o o

2

CD
CO

0.85

0.8

0.75
0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35$-

0.3

NP learning in PADO in an acoustic classification domain
 1 1 1 1 1

1 STD Above IRNP Nearest-Neighbor •■«-■•
1 STD Below IRNP Nearest-Neighbor

1 STD Above IRNP Weight-Search
1 STD Below IRNP Weight-Search

10 20 30 40
Generations

50 60 70

Figure H.12: The standard error curves for Figure 7.14.

80

0.75 -
ID

o 0.7 -
o
0^ 0.65 -
c
o 0.6 -
es
N 0.55 -
CO
01 c 0.5 -
a
Ol 0.45 -
CD

CO 0.4 f
CO

ß 0.35 i H

0.3 L

NP learning in PADO in an acoustic classification domain

STD Above IRNP and Weight-Search and Timestep Threshold = 20 -©—
1 STD Below IRNP and Weight-Search and Timestep Threshold = 20 -(—
1 STD Above IRNP and Weight-Search and Timestep Threshold = 10 -B—
1 STD Below IRNP and Weight-Search and Timestep Threshold = 10 -x~

10 20 30 40
Generations

50 60 70

Figure H.13: The standard error curves for Figure 7.17.

80

156 APPENDIX H. STATISTICAL SIGNIFICANCE INFORMATION

NP learning in PADO in an acoustic classification domain

o
o

a
c
CD

o
0)

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

1 STD Above IRNP Nearest-Neighbor Timestep Threshold = 20 ••«■■•
1 STD Below IRNP Nearest-Neighbor Timestep Threshold = 20 ■-+••
1 STD Above IRNP Nearest-Neighbor Timestep Threshold = 10
1 STD Below IRNP Nearest-Neighbor Timestep Threshold = 10

70 0 10 20 30 40 50 60
Generations

Figure H.14: The standard error curves for Figure 7.18

80

o
o

ß

0.55

NP evolution in PADO in the Hand-Held Image classification domain

-jta^jaBBGBBaSEEHSEBaaöaaBBEGEEBBEEl

I I I I I I I I I I I I I II '

1 STD Above NP -WITH- IRNP recombination and Weight-Search Orch -e—
1 STD Below NP -WITH- IRNP recombination and Weight-Search Orch -+-

1 STD Above NP -WITH- IRNP recombination and Nearest-Neighbor Orch -B--
1 STD Below NP -WITH- IRNP recombination and Nearest-Neighbor Orch -x-

10 20 30 40 50
Generations

60 70

Figure H.15: The standard error curves for Figure 7.21.

80

Bibliography

[Altenberg, 1994] L. Altenberg. The evolution of evolvability in genetic programming. In
Jr. K. Kinnear, editor, Advances In Genetic Programming, pages 47-74. MIT Press, 1994.

[Andre and Teller, 1996] D. Andre and A. Teller. A study in program response and the
negative effects of introns in genetic programming. In John R. Koza, David E. Goldberg,
David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of
the First Annual Conference, page 12, Stanford University, CA, USA, 28-31 July 1996.
MIT Press.

[Andre and Teller, 1998] David Andre and Astro Teller. Evolving team darwin united. In
Minoru Asada, editor, RoboCwp-98: Robot Soccer World Cup II. Springer Verlag, 1998.

[Andre et al., 1996] David Andre, Forrest H. Bennett III, and John R. Koza. Discovery by
genetic programming of a cellular automata rule that is better than any known rule for
the majority classification problem. In John R. Koza, David E. Goldberg, David B. Fogel,
and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 3-11, Stanford University, CA, USA, 28-31 July 1996. MIT Press.

[Andre, 1994] David Andre. Automatically defined features: The simultaneous evolution of
2-dimensional feature detectors and an algorithm for using them. In K. Kinnear, editor,
Advances In Genetic Programming, pages 477-494. MIT Press, 1994.

[Andre, 1995] David Andre. The evolution of agents that build mental models and create
simple plans using genetic programming. In L. Eshelman, editor, Genetic Algorithms:
Proceedings of the Sixth International Conference (ICGA95), pages 248-255, Pittsburgh,
PA, USA, 15-19 July 1995. Morgan Kaufmann.

[Angeline and Kinnear, Jr., 1996] Peter J. Angeline and K. E. Kinnear, Jr., editors. Ad-
vances in Genetic Programming 2. MIT Press, Cambridge, MA, USA, 1996.

[Angeline and Pollack, 1993] Peter Angeline and J. Pollack. Evolutionary module acquisi-
tion. In D. Fogel, editor, Proceedings of the Second Annual Conference on Evolutionary
Programming, pages 154-163. Evolutionary Programming Society, 1993.

[Angeline, 1993] P. Angeline. Evolutionary Algorithms and Emergent Intelligence. PhD
thesis, Ohio State University, Computer Science Department, 1993.

157

158 BIBLIOGRAPHY

[Angeline, 1996] P. Angeline. Two self-adaptive crossover operators for genetic program-
ming. In P. Angeline and K. Kinnear, editors, Advances in Genetic Programming 2. MIT
Press, 1996.

[Angeline, 1997a] Peter J. Angeline. An alternative to indexed memory for evolving pro-
grams with explicit state representations. In John R. Koza, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference, pages 423-430, Stan-
ford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[Angeline, 1997b] Peter J. Angeline. Subtree crossover: Building block engine or macromu-
tation? In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the
Second Annual Conference, pages 9-17, Stanford University, CA, USA, 13-16 July 1997.
Morgan Kaufmann.

[Bairoch and Boeckmann, 1991] A. Bairoch and B. Boeckmann. The swiss-prot protein se-
quence data bank: current status. Nucleic Acids Research, 22(17):3578-3580, 1991.

[Baluja and Caruana, 1995] Shumeet Baluja and Rich Caruana. Removing the genetics from
the standard genetic algorithm. In Proceedings of the Twelfth International Conference
on Machine Learning, pages 38-46. Morgan Kaufmann, 1995.

[Baluja, 1995] Shumeet Baluja. Artificial neural network evolution: Learning to steer a land
vehicle. In Chambers [1995], chapter 1.

[Baluja, 1996] Shumeet Baluja. Genetic algorithms and explicit search statistics. In Pro-
ceedings of the 1996 Neural Information Processing Society. MIT Press, 1996.

[Banzhaf et al., 1998] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D.
Francone. Genetic Programming - An Introduction On the Automatic Evolution of Com-
puter Programs and its Applications. Morgan Kaufmann, dpunkt.verlag, November 1998.

[Baxter and Bartlett, 1998] J. Baxter and P. L. Bartlett. The canonical distortion mea-
sure in feature space and 1-nn classification. In Neural Information Processing Systems,
Cambridge, MA, 1998. MIT Press.

[Beck and Fischer, 1995] T. Beck and Herbert Fischer. The IF-problem in automatic differ-
entiation. Journal of Comput. Appl. Math., 50:119-131, 1995.

[Bielak, 1993a] Dennis C. Bielak. Improving Classification with adaptive sysnthesis based on
collective learning. PhD thesis, George Washington University, 1993.

[Bielak, 1993b] Dennis Chester Bielak. Improving Classification with adaptive synthesis
based on collective learning. PhD thesis, George Washington University, 1993.

BIBLIOGRAPHY 159

[Bischof et ai, 1992] Christian H. Bischof, Alan Carle, George F. Corliss, and Andreas
Griewank. ADIFOR: Automatic differentiation in a source translation environment. In
Paul S. Wang, editor, Proceedings of the International Symposium on Symbolic and Alge-
braic Computation, pages 294-302, New York, 1992. ACM Press.

[Blum, 1995] A. Blum. Empirical support for winnow and weighted-majority based algo-
rithms: results on a calendar scheduling domain. In Proceedings of the Twelfth Interna-
tional Conference on Machine Learning. Morgan Kaufmann, 1995.

[Brave, 1996a] Scott Brave. The evolution of memory and mental models using genetic
programming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages
261-266, Stanford University, CA, USA, 28-31 July 1996. MIT Press.

[Brave, 1996b] Scott Brave. Evolving deterministic finite automata using cellular encoding.
In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual Conference, pages 39-44, Stanford
University, CA, USA, 28-31 July 1996. MIT Press.

[Brave, 1996c] Scott Brave. Using genetic programming to evolve recursive programs for tree
search. In P. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming
2, chapter 10. MIT Press, Cambridge, MA, USA, 1996.

[Brooks, 1986] R.A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14—23, 1986.

[Brooks, 1990] R.A. Brooks. Elephants don't play chess. Robotics and Autonomous Systems,
6:3-15, 1990.

[Brooks, 1997] R.A. Brooks. From earwigs to humans. Robotics and Autonomous Systems,
20(2-4):291-304, 1997.

[Cedano et al., 1997] Juan. Cedano, Patrick Aloy, Josep Perez-Pons, and Enrique Querol.
Relation between amino acid composition and cellular location of proteins. Journal of
Molecular Biology, 266(3):594-600, 1997.

[Chambers, 1995] Lance Chambers, editor. Practical handbook of genetic algorithms: new
frontiers, volume II. CRC Press, Inc., 1995.

[Chavent et ah, 1996] Guy Chavent, Jerome Jaffre, Sophie Jegou, and Jun Liu. A sym-
bolic code generator for parameter estimation. In Martin Berz, Christian Bischof, George
Corliss, and Andreas Griewank, editors, Computational Differentiation: Techniques, Ap-
plications, and Tools, pages 129-136. SIAM, Philadelphia, Penn., 1996.

[Chellapilla, 1997] Kumar Chellapilla. Evolutionary programming with tree mutations:
Evolving computer programs without crossover. In John R. Koza, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Pro-
gramming 1997: Proceedings of the Second Annual Conference, pages 431-438, Stanford
University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

160 BIBLIOGRAPHY

[Collins, 1992] Robert Collins. Studies in Artifical Evolution. PhD thesis, University of
California in LA, Department of Computer Science, 1992.

[Conrads et al, 1998] M. Conrads, P. Nordin, and W. Banzhaf. Speech sound discrimination
with genetic programming. In W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty,
editors, Proceedings of the First European Workshop on Genetic Programming, LNCS,
Paris, 14-15 April 1998. Springer-Verlag. Forthcoming.

[Cramer, 1985] Nichael Lynn Cramer. A representation for the adaptive generation of simple
sequential programs. In John J. Grefenstette, editor, Proceedings of an International
Conference on Genetic Algorithms and the Applications, pages 183-187, Carnegie-Mellon
University, Pittsburgh, PA, USA, 24-26 July 1985.

[Cribs and Smith, 1996] H. Brown Cribs and Robert E. Smith. Classifier systems renais-
sance: New analogies, new directions. In John R. Koza, David E. Goldberg, David B.
Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 547-552, Stanford University, CA, USA, 28-31 July 1996. MIT
Press.

[Daida, 1996] Jason Daida. Algorithm discovery using the genetic programming paradigm:
Extracting low-contrast curvilinear features from SAR images of arctic ice. In P. Angeline
and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 21. MIT
Press, Cambridge, MA, USA, 1996.

[Dellaert and Beer., 1994] F. Dellaert and R.D. Beer. Co-evolving body and brain in au-
tonomous agents using a developmental model. In Technical Report CES-9^-16, Depart-
ment of Computer Engineering and Science. Case Western Reserve University, Cleveland,
OH 44106, 1994.

[Dennett, 1992] Daniel Dennett. Consciousness Explained. Little Brown and Co., 1992.

[Fogel et al, 1966] L. Fogel, A. Owens, and M. Walsh. Artifical Intelligence through Simu-
lated Evolution. New York: Wiley, 1966.

[Fogel et al, 1995] L. Fogel, P. Angeline, and D. Fogel. An evolutionary programming ap-
proach to self-adaptation on finite state machines. In J. McDonnell, R. Reynolds, and
D. Fogel, editors, Proceedings of the 4th Annual Conference on Evolutionary Program-
ming. MIT Press, 1995.

[Gathercole and Ross, 1996] Chris Gathercole and Peter Ross. An adverse interaction be-
tween crossover and restricted tree depth in genetic programming. In John R. Koza,
David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual Conference, pages 291-296, Stanford University,
CA, USA, 28-31 July 1996. MIT Press.

[Goldberg et al, 1989] D. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Mo-
tivation, analysis, and first results. In Complex Systems, volume 3(5): 493-530. 1989.

BIBLIOGRAPHY 161

[CIOMIXTü. I'lS!)] David Goldberg. Genetic Algorithms: In search, optimization, and ma-
linui htirniiii/. Addison-Wesley Press, 1989.

[(ii i<-w«ttiK «tii*i Corliss, 1991] Andreas Griewank and George F. Corliss, editors. Automatic
I hf'ii i, i,tuition of Algorithms: Theory, Implementation, and Application. SIAM, Philadel-
phia. Pun.. I')!)l.

Cm.m .UHI (Ju.iiramaran, 1996] Frederic Gruau and Kameel Quatramaran. Cellular encod-
iii-j l<>! iiiii-i.i< live evolutionary robotics. Cognitive Science Research Paper 425, School of
('ii-jhim«- .iml Computing Sciences, University of Sussex, Falmer, Brighton, Sussex, UK,
l't'M,

(IMI.III. 1't'i I,,]•'. Gruau. Neural Network Synthesis using Cellular Encoding and the Genetic
Mi/m itlnn. PhD thesis, Laboratoire de l'Informatique du Parallilisme, Ecole Normale

Sn|iiiifiitf■ <lc Lyon, France, 1994.

[Cm.tu. I'd» llii Frederic Gruau. Genetic micro programming of neural networks. In Jr.
hcniii'tli I'.. Kinnear, editor, Advances In Genetic Programming, pages 495-518. MIT
Pi. — . I!l!)|.

[iliiinock. 1 *)!)()] P. J. B. Hancock. GANNET: Design of a neural network for face recogni-
tion l>y genetic algorithm. In Proceedings of the IEEE Workshop on Genetic Algorithms,
Sinuilatfd Annealing and Neural Networks, University of Glasgow, Scotland, 1990.

[Haynes and Sen, 1996] Thomas Haynes and Sandip Sen. Evolving behavioral strategies in
predators and prey. In Gerhard Weißand Sandip Sen, editors, WEISS96, pages 113-126.
Springer Verlag, Berlin, 1996.

[Haynes et a/., 1995] Thomas Haynes, Roger Wainwright, Sandip Sen, and Dale Schoenefeld.
Strongly typed genetic programming in evolving cooperation strategies. In Stephanie
Forrest, editor, ICGA95, pages 271-278, San Mateo, CA, July 1995. Morgan Kaufman.

[Hild and Waibel, 1993] H. Hild and A. Waibel. Multi-speaker/speaker-independent archi-
tectures for the multi-state time delay neural network. In Proceedings of the Intern.
Conference on Acoustics, Speech and Signal Processing. 1993.

[Holland and Reitman, 1978] J.H. Holland and J. S. Reitman. Cognitive systems based on
adaptive algorithms. In Pattern Directed Inference Systems. Academic Press, 1978.

[Holland, 1975] J. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

[Hopcroft and Ullman, 1979] J. Hopcroft and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 1979.

[Ikeuchi and Veloso, 1997] Katsu Ikeuchi and Manuela Veloso, editors. Symbolic Visual
Learning. Oxford University Press, 1997.

162 BIBLIOGRAPHY

[Intrator et aL, 1995] N. Intrator, D. Reisfeld, and Y. Yeshurun. Face recognition using a
hybrid supervised/unsupervised neural network. In Proceedings of the Face and Object

Recognition Conference, 1995.

[Kinnear, Jr., 1993] Kenneth E. Kinnear, Jr. Generality and difficulty in genetic program-
ming: Evolving a sort. In Stephanie Forrest, editor, Proceedings of the 5th International
Conference on Genetic Algorithms, ICGA-93, pages 287-294, University of Illinois at
Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann.

[Kinnear, Jr., 1994] Kenneth E. Kinnear, Jr., editor. Advances in Genetic Programming.

MIT Press, Cambridge, MA, 1994.

[Kitano et aL, 1997] Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia
Coradeschi, Eiichi Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The
RoboCup synthetic agent challenge 97. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 24-29, San Francisco, CA, 1997. Morgan Kauf-
mann.

[Koza et aL, 1996] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A.
Keane. Automated WYWIWYG design of both the topology and component values of elec-
trical circuits using genetic programming. In John R. Koza, David E. Goldberg, David B.
Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 123-131, Stanford University, CA, USA, 28-31 July 1996. MIT
Press.

[Koza et aL, 1998] John R. Koza, Forrest Bennett, and David Andre. Classifying proteins
as extracellular using programmatic motifs and genetic programming. In Proceedings of
the IEEE International Conference on Evolutionary Computation. IEEE Press, 1998.

[Koza, 1992] J. Koza. Genetic Programming. MIT Press, 1992.

[Koza, 1994] J. Koza. Genetic Programming 2. MIT Press, 1994.

[Langdon, 1995] William Langdon. Evolving data structures with genetic programming. In
Stephanie Forrest, editor, Proceedings of the Sixth International Conference on Genetic
Algorithms. Morgan Kauffman, 1995.

[Langdon, 1996] William Langdon. Data structures and genetic programming. In P. Angeline
and K. Kinnear, editors, Advances in Genetic Programming 2. MIT Press, 1996.

[Littlestone and Warmuth, 1994] N. Littlestone and M. K. Warmuth. The weighted-
majority algorithm. 108(2):212-261, 1994.

[Littlestone, 1988] N. Littlestone. Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. In Machine Learning, pages 2:285-318. 1988.

BIBLIOGRAPHY 163

[Luke and Spector, 1996] Sean Luke and Lee Spector. Evolving teamwork and coordina-
tion with genetic programming. In John R. Koza, David E. Goldberg, David B. Fogel,
and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 150-156, Stanford University, CA, USA, 28-31 July 1996. MIT Press.

[Maxwell III, 1994] Sidney R. Maxwell III. Experiments with a coroutine model for genetic
programming. In Proceedings of the 1994 IEEE World Congress on Computational Intel-
ligence, Orlando, Florida, USA, volume 1, pages 413-417a, Orlando, Florida, USA, 27-29
June 1994. IEEE Press.

[Mitchell, 1997] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[Nguyen and Huang, 1994] T. Nguyen and T. Huang. Evolvable 3d modeling for model-
based object recognition systems. In K. Kinnear, editor, Advances In Genetic Program-
ming. MIT Press, 1994.

[Nordin and Banzhaf, 1996] Peter Nordin and Wolfgang Banzhaf. Programmatic compres-
sion of images and sound. In John R. Koza, David E. Goldberg, David B. Fogel, and
Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Con-
ference, pages 345-350, Stanford University, CA, USA, 28-31 July 1996. MIT Press.

[Nordin, 1997a] Peter Nordin. Evolutionary Program Induction of Binary Machine Code and
its Applications. PhD thesis, der Universität Dortmund am Fachereich Informatik, 1997.

[Nordin, 1997b] Peter Nordin. Evolutionary Program Induction of Binary Machine Code
and its Applications. PhD thesis, Krehl Verlag, Krehl Verlag, Postfach 51 01 42, D-48163
Muenster, GERMANY, 1997.

[Oakley, 1994] E. H. N. Oakley. The application of genetic programming to the investigation
of short, noisy, chatoic data series. In T. C. Fogarty, editor, Lecture Notes in Computer
Science: Evolutionary Computation. Springer-Verlag, 1994.

[Olsson, 1995] Roland Olsson. Inductive Functional Programming using Incremental Pro-
gram Transformation. PhD thesis, University of Oslo, 1995.

[O'Reilly, 1995] Una-May O'Reilly. An Analysis of Genetic Programming. PhD thesis,
Carelton University, Ottawa-Carleton Institute for Computer Science, Ottawa, Ontario,
Canada, 22 September 1995.

[Poli, 1996a] Riccardo Poli. Genetic programming for image analysis. In John R. Koza,
David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual Conference, pages 363-368, Stanford University,
CA, USA, 28-31 July 1996. MIT Press.

[Poli, 1996b] Riccarod Poli. Discovery of symbolic, neuro-symbolic and neural networks
with parallel distributed genetic programming. In Technical Report CSRP-96-14, School
of Computer Science, University of Birmingham. University of Birmingham, 1996.

164 BIBLIOGRAPHY

[Pomerleau, 1992] Dean Pomerleau. Neural Network Perception for Mobile Robot Guidance.
PhD thesis, Carnegie Mellon University School of Computer Science, 1992.

[Porto et al., 1995] Vincent W. Porto, David B. Fogel, and Lawrence J. Fogel. Alternative
neural network training methods. IEEE Expert, 10(3):16—22, 1995.

[Press et al., 1992] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipies in C: the art of scientific computing. Cambridge University
Press, Cambridge, 2nd edition, 1992.

[Quinlan, 1986] J. R. Quinlan. Induction of decision trees. In Machine Learning, pages
81-106. Kluwer Academic Publishers, Boston, MA, USA, 1986.

[Rechenberg, 1965] I. Rechenberg. Cybernetic solution path of an experimental problem.
Ministry of Aviation, Royal Aircraft Establishment (U.K.), 1965.

[Rice, 1987] John A. Rice. Mathematical statistics and data analysis. The Wadsworth and
Brooks-Cole Statistics-Probability Series. Wadsworth and Brooks-Cole Advanced Books
and Software, Pacific Grove, California, 1987.

[Rosca and Ballard, 1996] Justinian P. Rosca and Dana H. Ballard. Discovery of subroutines
in genetic programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances
in Genetic Programming 2, chapter 9, pages 177-202. MIT Press, Cambridge, MA, USA,
1996.

[Rowley et al., 1995] H. Rowley, S. Baluja, and T. Kanade. Human face detection in visual
scenes. In Neural Information Processing Systems, number 8. MIT Press, 1995.

[Rumelhart et al, 1986] D.E. Rumelhart, G.E. Hinton, and R.J Williams. Learning inter-
nal represenations by error propogation. In Parallel Distributed Processing. MIT Press,
Cambridge, MA, USA, 1986.

[Sebald et al., 1991] A. Sebald, J. Schlenzig, and D. Fogel. Minimax design of cmac encoded
neural controllers for systems with variable time delay. In R. R. Chen, editor, Proceedings
of the 25th Asilomar Conference on Signals, Systems, and Computers, pages 551-555.
Maple Press, 1991.

[Selfridge, 1966] Oliver Selfridge. Pandemonium: A paradigm for learning. In L. Uhr, editor,
Pattern Recognition. Wiley, 1966.

[Sharman et al., 1995] K. Sharman, A. Alcazar, and Y. Li. Evolving signal processing algo-
rithms by genetic programming. In First International Conference on Genetic Algorithms
in Engineering Systems: Innovations and Applications, GALESIA, 1995.

[Sims, 1994] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st International
SIGGRAPH Conference. ACM Press, 1994.

BIBLIOGRAPHY 165

[Squires and Sammut, 1995] B. Squires and C. Sammut. Automatic speaker recognition: An
application of machine learning. In Proceedings of the Twelfth International Conference
on Machine Learning. 1995.

[Stryer, 1995] Lubert Stryer. Biochemistry. W.H. Freeman, 1995.

[Sung and Poggio., 1994] K. Sung and T. Poggio. Example-based learning for view-based
human face detection. In Technical Report A.I. Memo 1521, CBCL. MIT, 1994.

[Sutton, 1988] R.S. Sutton. Learning to predict by the methods of temporal differences. In
Proceedings of the International Conference on Machine Learning. AAAI Press, 1988.

[Tackett, 1993] Walter A. Tackett. Genetic programming for feature discovery and image
discrimination. In Stephanie Forrest, editor, Proceedings of the Fifth International Con-
ference on Genetic Algorithms. Morgan Kauffman, 1993.

[Tackett, 1994] Walter A. Tackett. Recombination, Selection, and the Genetic Construction
of Computer Programs. PhD thesis, University of Southern California, 1994. Available
as: Technical Report CENG 94-13. Dept. of Electrical Engineering Systems.

[Tebelski, 1995] Joe Tebelski. Speech Recognition using Neural Networks. PhD thesis,
Carnegie Mellon University School of Computer Science, 1995.

[Teller and Veloso, 1995a] A. Teller and M. Veloso. Algorithm evolution for face recogni-
tion: What makes a picture difficult. In Proceedings of the International Conference on
Evolutionary Computation. IEEE Press, 1995.

[Teller and Veloso, 1995b] A. Teller and M. Veloso. Language representation progression in
PADO. In AAAI Fall Symposium Series. AAAI Technical Report. AAAI Press, 1995.

[Teller and Veloso, 1995c] A. Teller and M. Veloso. PADO: Learning tree structured algo-
rithms for orchestration into an object recognition system. Technical Report CMU-CS-
95-101, Computer Science Department, Carnegie Mellon University, 1995.

[Teller and Veloso, 1995d] A. Teller and M. Veloso. Program evolution for data mining. In
Sushil Louis, editor, The International Journal of Expert Systems. Third Quarter. Special
Issue on Genetic Algorithms and Knowledge Bases., pages 216-236. JAI Press, 1995.

[Teller and Veloso, 1996] Astro Teller and Manuela Veloso. Neural programming and an
internal reinforcement policy. In First International Conference on Simulated Evolution
and Learning, pages 279-86. Springer-Verlag, 1996.

[Teller and Veloso, 1997] A. Teller and M. Veloso. PADO: A new learning architecture for
object recognition. In K. Ikeuchi and M. Veloso, editors, Symbolic Visual Learning. Oxford
University Press, 1997.

[Teller, 1994a] A. Teller. The evolution of mental models. In Kenneth E. Kinnear, editor,
Advances In Genetic Programming, pages 199-220. MIT Press, 1994.

166 BIBLIOGRAPHY

[Teller, 1994b] A. Teller. Turing completeness in the language of genetic programming with
indexed memory. In Proceedings of the First IEEE World Congress on Computational
Intelligence, pages 136-146. IEEE Press, 1994.

[Teller, 1996] A. Teller. Evolving programmers: The co-evolution of intelligent recombina-
tion operators. In K. Kinnear and P. Angeline, editors, Advances in Genetic Programming

2. MIT, 1996.

[Thrun and Mitchell, 1994] S. Thrun and T.M Mitchell. Learning one more thing. Technical
Report CMU-CS-94-184, Computer Science Department, Carnegie Mellon Unversity, 1994.

[Turk and Pentland, 1991] M. Turk and A. Pentland. Eigenfaces for recognition. In Journal

of Cognitive Neuroscience, 1991.

[Viola, 1993] P. Viola. Feature-based recognition of objects. In AAAI FSS on Machine

Learning in Computer Vision. AAAI, 1993.

[Waibel et ai, 1989] A.H. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang.
Phoneme recognition using time-delay neural networks. In IEEE Transactions on Acous-
tics, Speech and Signal Processing. 1989. 1989.

[Watkins, 1989] Christopher J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis,
King's College, 1989.

[Whitley et ai, 1995] Darrell Whitley, Frederic Gruau, and Larry Pyeatt. Cellular encoding
applied to neurocontrol. In L. Eshelman, editor, Genetic Algorithms: Proceedings of the
Sixth International Conference (ICGA95), pages 460-467, Pittsburgh, PA, USA, 15-19
July 1995. Morgan Kaufmann.

[Wilson and Goldberg, 1989] S. W. Wilson and D. E. Goldberg. A critical review of classifier
systems. In Proceedings of the Third International Conf. On Genetic Alogirithms. Morgan
Kauffman, 1989.

[Wilson, 1987] S.W. Wilson. Hierarchical credit allocation in a classifier system. In Genetic
Algorithms and Simulated Annealing. Morgan Kaufman Publishers, 1987.

[Wolpert, 1992] D. H. Wolpert. Stacked generalization. In Neural Networks, volume 5, pages
241-259. Pergamon Press, 1992.

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

